

New debugging method found 23 undetected
security flaws in 50 popular Web applications
in less than an hour

April 15 2016, by Larry Hardesty

In tests on 50 popular Web applications written using Ruby on Rails, a new
debugging system found 23 previously undiagnosed security flaws, and it took no
more than 64 seconds to analyze any given program. Credit: MIT News

1/5

By exploiting some peculiarities of the popular web programming
framework Ruby on Rails, MIT researchers have developed a system
that can quickly comb through tens of thousands of lines of application
code to find security flaws.

In tests on 50 popular web applications written using Ruby on Rails, the
system found 23 previously undiagnosed security flaws, and it took no
more than 64 seconds to analyze any given program.

The researchers will present their results at the International Conference
on Software Engineering, in May.

According to Daniel Jackson, professor in the Department of Electrical
Engineering and Computer Science, the new system uses a technique
called static analysis, which seeks to describe, in a very general way, how
data flows through a program.

"The classic example of this is if you wanted to do an abstract analysis of
a program that manipulates integers, you might divide the integers into
the positive integers, the negative integers, and zero," Jackson explains.
The static analysis would then evaluate every operation in the program
according to its effect on integers' signs. Adding two positives yields a
positive; adding two negatives yields a negative; multiplying two
negatives yields a positive; and so on.

"The problem with this is that it can't be completely accurate, because
you lose information," Jackson says. "If you add a positive and a
negative integer, you don't know whether the answer will be positive,
negative, or zero. Most work on static analysis is focused on trying to
make the analysis more scalable and accurate to overcome those sorts of
problems."

With web applications, however, the cost of accuracy is prohibitively

2/5

https://techxplore.com/tags/program/

high, Jackson says. "The program under analysis is just huge," he says.
"Even if you wrote a small program, it sits atop a vast edifice of libraries
and plug-ins and frameworks. So when you look at something like a web
application written in language like Ruby on Rails, if you try to do a
conventional static analysis, you typically find yourself mired in this
huge bog. And this makes it really infeasible in practice."

That vast edifice of libraries, however, also gave Jackson and his former
student Joseph Near, who graduated from MIT last spring and is now
doing a postdoc at the University of California at Berkeley, a way to
make to make static analysis of programs written in Ruby on Rails
practical.

A library is a compendium of code that programmers tend to use over
and over again. Rather than rewriting the same functions for each new
program, a programmer can just import them from a library.

Ruby on Rails—or Rails, as it's called for short—has the peculiarity of
defining even its most basic operations in libraries. Every addition, every
assignment of a particular value to a variable, imports code from a
library.

Near rewrote those libraries so that the operations defined in them
describe their own behavior in a logical language. That turns the Rails
interpreter, which converts high-level Rails programs into machine-
readable code, into a static-analysis tool. With Near's libraries, running a
Rails program through the interpreter produces a formal, line-by-line
description of how the program handles data.

In his PhD work, Near used this general machinery to build three
different debuggers for Ruby on Rails applications, each requiring
different degrees of programmer involvement. The one described in the
new paper, which the researchers call Space, evaluates a program's data

3/5

access procedures.

Near identified seven different ways in which web applications typically
control access to data. Some data are publicly available, some are
available only to users who are currently logged in, some are private to
individual users, some users—administrators—have access to select
aspects of everyone's data, and so on.

For each of these data-access patterns, Near developed a simple logical
model that describes what operations a user can perform on what data,
under what circumstances. From the descriptions generated by the
hacked libraries, Space can automatically determine whether the
program adheres to those models. If it doesn't, there's likely to be a
security flaw.

Using Space does require someone with access to the application code to
determine which program variables and functions correspond to which
aspects of Near's models. But that isn't an onerous requirement: Near
was able to map correspondences for all 50 of the applications he
evaluated. And that mapping should be even easier for a programmer
involved in an application's development from the outset, rather than
coming to it from the outside as Near did.

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: New debugging method found 23 undetected security flaws in 50 popular Web
applications in less than an hour (2016, April 15) retrieved 9 April 2024 from
https://techxplore.com/news/2016-04-debugging-method-undetected-flaws-popular.html

4/5

https://techxplore.com/tags/web+applications/
https://techxplore.com/tags/application+code/
http://web.mit.edu/newsoffice/
https://techxplore.com/news/2016-04-debugging-method-undetected-flaws-popular.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

