

New chip design makes parallel programs
run many times faster and requires one-tenth
the code

June 20 2016, by Larry Hardesty

“Multicore systems are really hard to program,” says Daniel Sanchez, an assistant
professor in MIT’s Department of Electrical Engineering and Computer Science.
“You have to explicitly divide the work that you’re doing into tasks, and then you
need to enforce some synchronization between tasks accessing shared data. What
this architecture does, essentially, is to remove all sorts of explicit
synchronization, to make parallel programming much easier.” Credit: Christine

1/6

Daniloff/MIT

Computer chips have stopped getting faster. For the past 10 years, chips'
performance improvements have come from the addition of processing
units known as cores.

In theory, a program on a 64-core machine would be 64 times as fast as
it would be on a single-core machine. But it rarely works out that way.
Most computer programs are sequential, and splitting them up so that
chunks of them can run in parallel causes all kinds of complications.

In the May/June issue of the Institute of Electrical and Electronics
Engineers' journal Micro, researchers from MIT's Computer Science and
Artificial Intelligence Laboratory (CSAIL) will present a new chip
design they call Swarm, which should make parallel programs not only
much more efficient but easier to write, too.

In simulations, the researchers compared Swarm versions of six common
algorithms with the best existing parallel versions, which had been
individually engineered by seasoned software developers. The Swarm
versions were between three and 18 times as fast, but they generally
required only one-tenth as much code—or even less. And in one case,
Swarm achieved a 75-fold speedup on a program that computer
scientists had so far failed to parallelize.

"Multicore systems are really hard to program," says Daniel Sanchez, an
assistant professor in MIT's Department of Electrical Engineering and
Computer Science, who led the project. "You have to explicitly divide
the work that you're doing into tasks, and then you need to enforce some
synchronization between tasks accessing shared data. What this
architecture does, essentially, is to remove all sorts of explicit

2/6

https://techxplore.com/tags/core/

synchronization, to make parallel programming much easier. There's an
especially hard set of applications that have resisted parallelization for
many, many years, and those are the kinds of applications we've focused
on in this paper."

Many of those applications involve the exploration of what computer
scientists call graphs. A graph consists of nodes, typically depicted as
circles, and edges, typically depicted as line segments connecting the
nodes. Frequently, the edges have associated numbers called "weights,"
which might represent, say, the strength of correlations between data
points in a data set, or the distances between cities.

Graphs crop up in a wide range of computer science problems, but their
most intuitive use may be to describe geographic relationships. Indeed,
one of the algorithms that the CSAIL researchers evaluated is the
standard algorithm for finding the fastest driving route between two
points.

Setting priorities

In principle, exploring graphs would seem to be something that could be
parallelized: Different cores could analyze different regions of a graph
or different paths through the graph at the same time. The problem is
that with most graph-exploring algorithms, it gradually becomes clear
that whole regions of the graph are irrelevant to the problem at hand. If,
right off the bat, cores are tasked with exploring those regions, their
exertions end up being fruitless.

Of course, fruitless analysis of irrelevant regions is a problem for
sequential graph-exploring algorithms, too, not just parallel ones. So
computer scientists have developed a host of application-specific
techniques for prioritizing graph exploration. An algorithm might begin
by exploring just those paths whose edges have the lowest weights, for

3/6

instance, or it might look first at those nodes with the lowest number of
edges.

What distinguishes Swarm from other multicore chips is that it has extra
circuitry for handling that type of prioritization. It time-stamps tasks
according to their priorities and begins working on the highest-priority
tasks in parallel. Higher-priority tasks may engender their own lower-
priority tasks, but Swarm slots those into its queue of tasks
automatically.

Occasionally, tasks running in parallel may come into conflict. For
instance, a task with a lower priority may write data to a particular
memory location before a higher-priority task has read the same
location. In those cases, Swarm automatically backs out the results of the
lower-priority tasks. It thus maintains the synchronization between cores
accessing the same data that programmers previously had to worry about
themselves.

Indeed, from the programmer's perspective, using Swarm is pretty
painless. When the programmer defines a function, he or she simply
adds a line of code that loads the function into Swarm's queue of tasks.
The programmer does have to specify the metric—such as edge weight
or number of edges—that the program uses to prioritize tasks, but that
would be necessary, anyway. Usually, adapting an existing sequential
algorithm to Swarm requires the addition of only a few lines of code.

Keeping tabs

The hard work falls to the chip itself, which Sanchez designed in
collaboration with Mark Jeffrey and Suvinay Subramanian, both MIT
graduate students in electrical engineering and computer science; Cong
Yan, who did her master's as a member of Sanchez's group and is now a
PhD student at the University of Washington; and Joel Emer, a professor

4/6

https://techxplore.com/tags/electrical+engineering/

of the practice in MIT's Department of Electrical Engineering and
Computer Science, and a senior distinguished research scientist at the
chip manufacturer NVidia.

The Swarm chip has extra circuitry to store and manage its queue of
tasks. It also has a circuit that records the memory addresses of all the
data its cores are currently working on. That circuit implements
something called a Bloom filter, which crams data into a fixed allotment
of space and answers yes/no questions about its contents. If too many
addresses are loaded into the filter, it will occasionally yield false
positives—indicating "yes, I'm storing that address"—but it will never
yield false negatives.

The Bloom filter is one of several circuits that help Swarm identify
memory access conflicts. The researchers were able to show that time-
stamping makes synchronization between cores easier to enforce. For
instance, each data item is labeled with the time stamp of the last task
that updated it, so tasks with later time-stamps know they can read that
data without bothering to determine who else is using it.

Finally, all the cores occasionally report the time stamps of the highest-
priority tasks they're still executing. If a core has finished tasks that have
earlier time stamps than any of those reported by its fellows, it knows it
can write its results to memory without courting any conflicts.

"I think their architecture has just the right aspects of past work on
transactional memory and thread-level speculation," says Luis Ceze, an
associate professor of computer science and engineering at the
University of Washington. "'Transactional memory' refers to a
mechanism to make sure that multiple processors working in parallel
don't step on each other's toes. It guarantees that updates to shared
memory locations occur in an orderly way. Thread-level speculation is a
related technique that uses transactional-memory ideas for

5/6

https://techxplore.com/tags/computer+science/

parallelization: Do it without being sure the task is parallel, and if it's
not, undo and re-execute serially. Sanchez's architecture uses many good
pieces of those ideas and technologies in a creative way."

 More information: Mark C. Jeffrey et al. Unlocking Ordered
Parallelism with the Swarm Architecture, IEEE Micro (2016). DOI:
10.1109/MM.2016.12

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: New chip design makes parallel programs run many times faster and requires one-tenth
the code (2016, June 20) retrieved 20 March 2024 from
https://techxplore.com/news/2016-06-chip-parallel-faster-requires-one-tenth.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://dx.doi.org/10.1109/MM.2016.12
http://dx.doi.org/10.1109/MM.2016.12
http://web.mit.edu/newsoffice/
https://techxplore.com/news/2016-06-chip-parallel-faster-requires-one-tenth.html
http://www.tcpdf.org

