

Scheme would make new high-capacity data
caches 33 to 50 percent more efficient

October 23 2017, by Larry Hardesty

Credit: Massachusetts Institute of Technology

In a traditional computer, a microprocessor is mounted on a "package," a
small circuit board with a grid of electrical leads on its bottom. The
package snaps into the computer's motherboard, and data travels

1/6

between the processor and the computer's main memory bank through
the leads.

As processors' transistor counts have gone up, the relatively slow
connection between the processor and main memory has become the
chief impediment to improving computers' performance. So, in the past
few years, chip manufacturers have started putting dynamic random-
access memory—or DRAM, the type of memory traditionally used for
main memory—right on the chip package.

The natural way to use that memory is as a high-capacity cache, a fast,
local store of frequently used data. But DRAM is fundamentally
different from the type of memory typically used for on-chip caches,
and existing cache-management schemes don't use it efficiently.

At the recent IEEE/ACM International Symposium on
Microarchitecture, researchers from MIT, Intel, and ETH Zurich
presented a new cache-management scheme that improves the data rate
of in-package DRAM caches by 33 to 50 percent.

"The bandwidth in this in-package DRAM can be five times higher than
off-package DRAM," says Xiangyao Yu, a postdoc in MIT's Computer
Science and Artificial Intelligence Laboratory and first author on the
new paper. "But it turns out that previous schemes spend too much
traffic accessing metadata or moving data between in- and off-package
DRAM, not really accessing data, and they waste a lot of bandwidth. The
performance is not the best you can get from this new technology."

Cache hash

By "metadata," Yu means data that describe where data in the cache
comes from. In a modern computer chip, when a processor needs a
particular chunk of data, it will check its local caches to see if the data is

2/6

https://techxplore.com/tags/main+memory/

already there. Data in the caches is "tagged" with the addresses in main
memory from which it is drawn; the tags are the metadata.

A typical on-chip cache might have room enough for 64,000 data items
with 64,000 tags. Obviously, a processor doesn't want to search all
64,000 entries for the one that it's interested in. So cache systems usually
organize data using something called a "hash table." When a processor
seeks data with a particular tag, it first feeds the tag to a hash function,
which processes it in a prescribed way to produce a new number. That
number designates a slot in a table of data, which is where the processor
looks for the item it's interested in.

The point of a hash function is that very similar inputs produce very
different outputs. That way, if a processor is relying heavily on data
from a narrow range of addresses—if, for instance, it's performing a
complicated operation on one section of a large image—that data is
spaced out across the cache so as not to cause a logjam at a single
location.

Hash functions can, however, produce the same output for different
inputs, which is all the more likely if they have to handle a wide range of
possible inputs, as caching schemes do. So a cache's hash table will often
store two or three data items under the same hash index. Searching two
or three items for a given tag, however, is much better than searching
64,000.

Dumb memory

Here's where the difference between DRAM and SRAM, the technology
used in standard caches, comes in. For every bit of data it stores, SRAM
uses six transistors. DRAM uses one, which means that it's much more
space-efficient. But SRAM has some built-in processing capacity, and
DRAM doesn't. If a processor wants to search an SRAM cache for a data

3/6

item, it sends the tag to the cache. The SRAM circuit itself compares the
tag to those of the items stored at the corresponding hash location and, if
it gets a match, returns the associated data.

DRAM, by contrast, can't do anything but transmit requested data. So
the processor would request the first tag stored at a given hash location
and, if it's a match, send a second request for the associated data. If it's
not a match, it will request the second stored tag, and if that's not a
match, the third, and so on, until it either finds the data it wants or gives
up and goes to main memory.

In-package DRAM may have a lot of bandwidth, but this process
squanders it. Yu and his colleagues—Srinivas Devadas, the Edwin Sibley
Webster Professor of Electrical Engineering and Computer Science at
MIT; Christopher Hughes and Nadathur Satish of Intel; and Onur Mutlu
of ETH Zurich—avoid all that metadata transfer with a slight
modification of a memory management system found in most modern
chips.

Any program running on a computer chip has to manage its own memory
use, and it's generally handy to let the program act as if it has its own
dedicated memory store. But in fact, multiple programs are usually
running on the same chip at once, and they're all sending data to main
memory at the same time. So each core, or processing unit, in a chip
usually has a table that maps the virtual addresses used by individual
programs to the actual addresses of data stored in main memory.

Yu and his colleagues' new system, dubbed Banshee, adds three bits of
data to each entry in the table. One bit indicates whether the data at that
virtual address can be found in the DRAM cache, and the other two
indicate its location relative to any other data items with the same hash
index.

4/6

"In the entry, you need to have the physical address, you need to have the
virtual address, and you have some other data," Yu says. "That's already
almost 100 bits. So three extra bits is a pretty small overhead."

There's one problem with this approach that Banshee also has to address.
If one of a chip's cores pulls a data item into the DRAM cache, the other
cores won't know about it. Sending messages to all of a chip's cores
every time any one of them updates the cache consumes a good deal of
time and bandwidth. So Banshee introduces another small circuit, called
a tag buffer, where any given core can record the new location of a data
item it caches.

Any request sent to either the DRAM cache or main memory by any
core first passes through the tag buffer, which checks to see whether the
requested tag is one whose location has been remapped. Only when the
buffer fills up does Banshee notify all the chips' cores that they need to
update their virtual-memory tables. Then it clears the buffer and starts
over.

The buffer is small, only 5 kilobytes, so its addition would not use up too
much valuable on-chip real estate. And the researchers' simulations show
that the time required for one additional address lookup per memory
access is trivial compared to the bandwidth savings Banshee affords.

 More information: Xiangyao Yu et al. Banshee, Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture -
MICRO-50 '17 (2017). DOI: 10.1145/3123939.3124555

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

5/6

https://techxplore.com/tags/memory/
http://dx.doi.org/10.1145/3123939.3124555
http://web.mit.edu/newsoffice/

Provided by Massachusetts Institute of Technology

Citation: Scheme would make new high-capacity data caches 33 to 50 percent more efficient
(2017, October 23) retrieved 17 April 2024 from https://techxplore.com/news/2017-10-scheme-
high-capacity-caches-percent-efficient.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

https://techxplore.com/news/2017-10-scheme-high-capacity-caches-percent-efficient.html
https://techxplore.com/news/2017-10-scheme-high-capacity-caches-percent-efficient.html
http://www.tcpdf.org

