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'Minimalist machine learning' algorithms
analyze images from very little data

February 21 2018

Images of a slice of mouse lymphblastoid cells; a. 1s the raw data, b is the
corresponding manual segmentation and c is the output of an MS-D network
with 100 layers. Credit: Data from A. Ekman and C. Larabell, National Center
for X-ray Tomography.

Mathematicians at the Department of Energy's Lawrence Berkeley
National Laboratory (Berkeley Lab) have developed a new approach to
machine learning aimed at experimental imaging data. Rather than

1/8



Tech?$plore

relying on the tens or hundreds of thousands of images used by typical
machine learning methods, this new approach "learns" much more
quickly and requires far fewer images.

Daniél Pelt and James Sethian of Berkeley Lab's Center for Advanced
Mathematics for Energy Research Applications (CAMERA) turned the
usual machine learning perspective on its head by developing what they
call a "Mixed-Scale Dense Convolution Neural Network (MS-D)" that
requires far fewer parameters than traditional methods, converges
quickly, and has the ability to "learn" from a remarkably small training
set. Their approach is already being used to extract biological structure
from cell images, and is poised to provide a major new computational
tool to analyze data across a wide range of research areas.

As experimental facilities generate higher resolution images at higher
speeds, scientists can struggle to manage and analyze the resulting data,
which is often done painstakingly by hand. In 2014, Sethian established
CAMERA at Berkeley Lab as an integrated, cross-disciplinary center to
develop and deliver fundamental new mathematics required to capitalize
on experimental investigations at DOE Office of Science user facilities.
CAMERA is part of the lab's Computational Research Division.

"In many scientific applications, tremendous manual labor is required to
annotate and tag images—it can take weeks to produce a handful of
carefully delineated images," said Sethian, who is also a mathematics
professor at the University of California, Berkeley. "Our goal was to
develop a technique that learns from a very small data set."

Details of the algorithm were published Dec. 26, 2017 in a paper in the
Proceedings of the National Academy of Sciences.

"The breakthrough resulted from realizing that the usual downscaling
and upscaling that capture features at various image scales could be
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replaced by mathematical convolutions handling multiple scales within a
single layer," said Pelt, who is also a member of the Computational
Imaging Group at the Centrum Wiskunde & Informatica, the national
research institute for mathematics and computer science in the
Netherlands.

To make the algorithm accessible to a wide set of researchers, a
Berkeley team led by Olivia Jain and Simon Mo built a web portal
"Segmenting Labeled Image Data Engine (SlideCAM)" as part of the
CAMERA suite of tools for DOE experimental facilities.

Tomographic images of a fiber-reinforced mini-composite, recanstructed using 1024
projections (2] and 128 projections (b). In (c), the output of an ME-0 network with
image (b) as input is shown. A small region indicated by a red square is shown enlarged
in the bottom-right corner of each image.}

Tomographic Images of a fiber-reinforced mini-composite, reconstructed using
1024 projections (a) and 120 projections (b). In (c), the output of an MS-D
network with image (b) as input is shown. A small region indicated by a red
square is shown enlarged in the bottom-right corner of each image. Credit:
Daniél Pelt and James Sethian, Berkeley Lab

One promising application is in understanding the internal structure of
biological cells and a project in which Pelt's and Sethian's MS-D method
needed only data from seven cells to determine the cell structure.
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"In our laboratory, we are working to understand how cell structure and
morphology influences or controls cell behavior. We spend countless
hours hand-segmenting cells in order to extract structure, and identify,
for example, differences between healthy vs. diseased cells," said
Carolyn Larabell, Director of the National Center for X-ray
Tomography and Professor at the University of California San Francisco
School of Medicine. "This new approach has the potential to radically
transform our ability to understand disease, and is a key tool in our new
Chan-Zuckerberg-sponsored project to establish a Human Cell Atlas, a

global collaboration to map and characterize all cells in a healthy human
body."

Getting More Science from Less Data

Images are everywhere. Smart phones and sensors have produced a
treasure trove of pictures, many tagged with pertinent information
identifying content. Using this vast database of cross-referenced images,
convolutional neural networks and other machine learning methods have
revolutionized our ability to quickly identify natural images that look
like ones previously seen and catalogued.

These methods "learn" by tuning a stunningly large set of hidden internal
parameters, guided by millions of tagged images, and requiring large
amounts of supercomputer time. But what if you don't have so many
tagged images? In many fields, such a database is an unachievable
luxury. Biologists record cell images and painstakingly outline the
borders and structure by hand: it's not unusual for one person to spend
weeks coming up with a single fully three-dimensional image. Materials
scientists use tomographic reconstruction to peer inside rocks and
materials, and then roll up their sleeves to label different regions,
identifying cracks, fractures, and voids by hand. Contrasts between
different yet important structures are often very small and "noise" in the
data can mask features and confuse the best of algorithms (and humans).
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These precious hand-curated images are nowhere near enough for
traditional machine learning methods. To meet this challenge,
mathematicians at CAMERA attacked the problem of machine learning
from very limited amounts of data. Trying to do "more with less," their
goal was to figure out how to build an efficient set of mathematical
"operators" that could greatly reduce the number of parameters. These
mathematical operators might naturally incorporate key constraints to
help in identification, such as by including requirements on scientifically
plausible shapes and patterns.
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Left: A schematic representation of a common DCHN architecture with scaling operations; downward arrows reprasant
downscaling operations, upward arrows represent upscaling operations, and dashed arrows representskipped connections.
Right: Schematic representation of an MS-D network with w=2 and d=3; colored lines represent 3x3 dilated convolutions, with
each color corresponding to a different dilation: All feature maps are used for the final cutput computation.

Left: A schematic representation of a common DCNN architecture with scaling
operations; downward arrows represent downscaling operations, upward arrows
represent upscaling operations and dashed arrows represent skipped connections.
Right: Schematic representation of an MS-D network with w=2 and d=3; colored
lines represent 3x3 dilated convolutions, with each color corresponding to a
different dilation: All feature maps are used for the final output computation.
Credit: Daniél Pelt and James Sethian, Berkeley Lab

Mixed-Scale Dense Convolution Neural Networks

Many applications of machine learning to imaging problems use deep
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convolutional neural networks (DCNNs), in which the input image and
intermediate images are convolved in a large number of successive
layers, allowing the network to learn highly nonlinear features. To
achieve accurate results for difficult image processing problems,
DCNNSs typically rely on combinations of additional operations and
connections including, for example, downscaling and upscaling
operations to capture features at various image scales. To train deeper
and more powerful networks, additional layer types and connections are
often required. Finally, DCNNs typically use a large number of
intermediate images and trainable parameters, often more than 100
million, to achieve results for difficult problems.

Instead, the new "Mixed-Scale Dense" network architecture avoids many
of these complications and calculates dilated convolutions as a substitute
to scaling operations to capture features at various spatial ranges,
employing multiple scales within a single layer, and densely connecting
all intermediate images. The new algorithm achieves accurate results
with few intermediate images and parameters, eliminating both the need
to tune hyperparameters and additional layers or connections to enable
training.

Getting high resolution science from low resolution
data

A different challenge is to produce high resolution images from low
resolution input. As anyone who has tried to enlarge a small photo and
found it only gets worse as it gets bigger, this sounds close to impossible.
But a small set of training images processed with a Mixed-Scale Dense
network can provide real headway. As an example, imagine trying to
denoise tomographic reconstructions of a fiber-reinforced mini-
composite material. In an experiment described in the paper, images
were reconstructed using 1,024 acquired X-ray projections to obtain
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images with relatively low amounts of noise. Noisy images of the same
object were then obtained by reconstructing using 128 projections.
Training inputs were noisy images, with corresponding noiseless images
used as target output during training. The trained network was then able
to effectively take noisy input data and reconstruct higher resolution
images.

New Applications

Pelt and Sethian are taking their approach to a host of new areas, such as
fast real-time analysis of images coming out of synchrotron light sources
and reconstruction problems in biological reconstruction such as for cells
and brain mapping.

"These new approaches are really exciting, since they will enable the
application of machine learning to a much greater variety of imaging
problems than currently possible," Pelt said. "By reducing the amount of
required training images and increasing the size of images that can be
processed, the new architecture can be used to answer important
questions in many research fields."

More information: Dani€l M. Pelt et al. A mixed-scale dense
convolutional neural network for image analysis, Proceedings of the

National Academy of Sciences (2017). DOI: 10.1073/pnas.1715832114
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