
 

A game changer: Metagenomic clustering
powered by supercomputers
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Proteins from metagenomes clustered into families according to their taxonomic
classification. Credit: Georgios Pavlopoulos and Nikos Kyrpides, JGI/Berkeley
Lab
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Did you know that the tools used for analyzing relationships between
social network users or ranking web pages can also be extremely
valuable for making sense of big science data? On a social network like
Facebook, each user (person or organization) is represented as a node
and the connections (relationships and interactions) between them are
called edges. By analyzing these connections, researchers can learn a lot
about each user—interests, hobbies, shopping habits, friends, etc.

In biology, similar graph-clustering algorithms can be used to understand
the proteins that perform most of life's functions. It is estimated that the
human body alone contains about 100,000 different protein types, and
almost all biological tasks—from digestion to immunity—occur when
these microorganisms interact with each other. A better understanding of
these networks could help researchers determine the effectiveness of a
drug or identify potential treatments for a variety of diseases.

Today, advanced high-throughput technologies allow researchers to
capture hundreds of millions of proteins, genes and other cellular
components at once and in a range of environmental conditions.
Clustering algorithms are then applied to these datasets to identify
patterns and relationships that may point to structural and functional
similarities. Though these techniques have been widely used for more
than a decade, they cannot keep up with the torrent of biological data
being generated by next-generation sequencers and microarrays. In fact,
very few existing algorithms can cluster a biological network containing
millions of nodes (proteins) and edges (connections).

That's why a team of researchers from the Department of Energy's
(DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and
Joint Genome Institute (JGI) took one of the most popular clustering
approaches in modern biology—the Markov Clustering (MCL)
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algorithm—and modified it to run quickly, efficiently and at scale on
distributed-memory supercomputers. In a test case, their high-
performance algorithm—called HipMCL—achieved a previously
impossible feat: clustering a large biological network containing about 70
million nodes and 68 billion edges in a couple of hours, using
approximately 140,000 processor cores on the National Energy Research
Scientific Computing Center's (NERSC) Cori supercomputer. A paper
describing this work was recently published in the journal Nucleic Acids
Research.

"The real benefit of HipMCL is its ability to cluster massive biological
networks that were impossible to cluster with the existing MCL
software, thus allowing us to identify and characterize the novel
functional space present in the microbial communities," says Nikos
Kyrpides, who heads JGI's Microbiome Data Science efforts and the
Prokaryote Super Program and is co-author on the paper. "Moreover we
can do that without sacrificing any of the sensitivity or accuracy of the
original method, which is always the biggest challenge in these sort of
scaling efforts."

"As our data grows, it is becoming even more imperative that we move
our tools into high performance computing environments, " he adds. "If
you were to ask me how big is the protein space? The truth is, we don't
really know because until now we didn't have the computational tools to
effectively cluster all of our genomic data and probe the functional dark
matter."

In addition to advances in data collection technology, researchers are
increasingly opting to share their data in community databases like the
Integrated Microbial Genomes & Microbiomes (IMG/M) system, which
was developed through a decades-old collaboration between scientists at
JGI and Berkeley Lab's Computational Research Division (CRD). But by
allowing users to do comparative analysis and explore the functional

3/8

https://techxplore.com/tags/data+collection+technology/


 

capabilities of microbial communities based on their metagenomic
sequence, community tools like IMG/M are also contributing to the data
explosion in technology.

How Random Walks Lead to Computing Bottlenecks

To get a grip on this torrent of data, researchers rely on cluster analysis,
or clustering. This is essentially the task of grouping objects so that
items in the same group (cluster) are more similar than those in other
clusters. For more than a decade, computational biologists have favored
MCL for clustering proteins by similarities and interactions.

"One of the reasons that MCL has been popular among computational
biologists is that it is relatively parameter free; users don't have to set a
ton of parameters to get accurate results and it is remarkably stable to
small alterations in the data. This is important because you might have to
redefine a similarity between data points or you might have to correct
for a slight measurement error in your data. In these cases, you don't
want your modifications to change the analysis from 10 clusters to 1,000
clusters," says Aydin Buluç, a CRD scientist and one of the paper's co-
authors.

But, he adds, the computational biology community is encountering a
computing bottleneck because the tool mostly runs on a single computer
node, is computationally expensive to execute and has a big memory
footprint—all of which limit the amount of data this algorithm can
cluster.

One of the most computationally and memory intensive steps in this
analysis is a process called random walk. This technique quantifies the
strength of a connection between nodes, which is useful for classifying
and predicting links in a network. In the case of an Internet search, this
may help you find a cheap hotel room in San Francisco for spring break
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and even tell you the best time to book it. In biology, such a tool could
help you identify proteins that are helping your body fight a flu virus.

Given an arbitrary graph or network, it is difficult to know the most
efficient way to visit all of the nodes and links. A random walk gets a
sense of the footprint by exploring the entire graph randomly; it starts at
a node and moves arbitrarily along an edge to a neighboring node. This
process keeps going until all of the nodes on the graph network have
been reached. Because there are many different ways of traveling
between nodes in a network, this step repeats numerous times.
Algorithms like MCL will continue running this random walk process
until there is no longer a significant difference between the iterations.

In any given network, you might have a node that is connected to
hundreds of nodes and another node with only one connection. The
random walks will capture the highly connected nodes because a
different path will be detected each time the process is run. With this
information, the algorithm can predict with a level of certainty how a
node on the network is connected to another. In between each random
walk run, the algorithm marks its prediction for each node on the graph
in a column of a Markov matrix—kind of like a ledger—and final
clusters are revealed at the end. It sounds simple enough, but for protein
networks with millions of nodes and billions of edges, this can become
an extremely computationally and memory intensive problem. With
HipMCL, Berkeley Lab computer scientists used cutting-edge
mathematical tools to overcome these limitations.

"We have notably kept the MCL backbone intact, making HipMCL a
massively parallel implementation of the original MCL algorithm," says
Ariful Azad, a computer scientist in CRD and lead author of the paper.

Although there have been previous attempts to parallelize the MCL
algorithm to run on a single GPU, the tool could still only cluster
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relatively small networks because of memory limitations on a GPU,
Azad notes.

"With HipMCL we essentially rework the MCL algorithms to run
efficiently, in parallel on thousands of processors, and set it up to take
advantage of the aggregate memory available in all compute nodes," he
adds. "The unprecedented scalability of HipMCL comes from its use of
state-of-the-art algorithms for sparse matrix manipulation."

According to Buluç, performing a random walk simultaneously from
many nodes of the graph is best computed using sparse-matrix matrix
multiplication, which is one of the most basic operations in the recently
released GraphBLAS standard. Buluç and Azad developed some of the
most scalable parallel algorithms for GraphBLAS's sparse-matrix matrix
multiplication and modified one of their state-of-the-art algorithms for
HipMCL.

"The crux here was to strike the right balance between parallelism and
memory consumption. HipMCL dynamically extracts as much
parallelism as possible given the available memory allocated to it," says
Buluç.

HipMCL: Clustering at Scale

In addition to the mathematical innovations, another advantage of
HipMCL is its ability to run seamlessly on any system—including
laptops, workstations and large supercomputers. The researchers
achieved this by developing their tools in C++ and using standard MPI
and OpenMP libraries.

"We extensively tested HipMCL on Intel Haswell, Ivy Bridge and
Knights Landing processors at NERSC, using a up to 2,000 nodes and
half a million threads on all processors, and in all of these runs HipMCL
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successfully clustered networks comprising thousands to billions of
edges," says Buluç. "We see that there is no barrier in the number of
processors that it can use to run and find that it can cluster networks
1,000 times faster than the original MCL algorithm."

"HipMCL is going to be really transformational for computational
biology of big data, just as the IMG and IMG/M systems have been for
microbiome genomics," says Kyrpides. "This accomplishment is a
testament to the benefits of interdisciplinary collaboration at Berkeley
Lab. As biologists we understand the science, but it's been so invaluable
to be able to collaborate with computer scientists that can help us tackle
our limitations and propel us forward."

Their next step is to continue to rework HipMCL and other 
computational biology tools for future exascale systems, which will be
able to compute quintillion calculations per second. This will be essential
as genomics data continues to grow at a mindboggling rate—doubling
about every five to six months. This will be done as part of DOE
Exascale Computing Project's Exagraph co-design center.

  More information: Ariful Azad et al. HipMCL: a high-performance
parallel implementation of the Markov clustering algorithm for large-
scale networks, Nucleic Acids Research (2018). DOI:
10.1093/nar/gkx1313
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