
 

Reducing false positives in credit card fraud
detection
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MIT researchers have employed a new machine-learning technique to
substantially reduce false positives in fraud-detecting technologies. Credit:
Chelsea Turner

Have you ever used your credit card at a new store or location only to
have it declined? Has a sale ever been blocked because you charged a
higher amount than usual?
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Consumers' credit cards are declined surprisingly often in legitimate 
transactions. One cause is that fraud-detecting technologies used by a
consumer's bank have incorrectly flagged the sale as suspicious. Now
MIT researchers have employed a new machine-learning technique to
drastically reduce these false positives, saving banks money and easing
customer frustration.

Using machine learning to detect financial fraud dates back to the early
1990s and has advanced over the years. Researchers train models to
extract behavioral patterns from past transactions, called "features," that
signal fraud. When you swipe your card, the card pings the model and, if
the features match fraud behavior, the sale gets blocked.

Behind the scenes, however, data scientists must dream up those
features, which mostly center on blanket rules for amount and location.
If any given customer spends more than, say, $2,000 on one purchase, or
makes numerous purchases in the same day, they may be flagged. But
because consumer spending habits vary, even in individual accounts,
these models are sometime inaccurate: A 2015 report from Javelin
Strategy and Research estimates that only one in five fraud predictions is
correct and that the errors can cost a bank $118 billion in lost revenue, as
declined customers then refrain from using that credit card.

The MIT researchers have developed an "automated feature
engineering" approach that extracts more than 200 detailed features for
each individual transaction—say, if a user was present during purchases,
and the average amount spent on certain days at certain vendors. By
doing so, it can better pinpoint when a specific card holder's spending
habits deviate from the norm.

Tested on a dataset of 1.8 million transactions from a large bank, the
model reduced false positive predictions by 54 percent over traditional
models, which the researchers estimate could have saved the bank
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190,000 euros (around $220,000) in lost revenue.

"The big challenge in this industry is false positives," says Kalyan
Veeramachaneni, a principal research scientist at MIT's Laboratory for
Information and Decision Systems (LIDS) and co-author of a paper
describing the model, which was presented at the recent European
Conference for Machine Learning. "We can say there's a direct
connection between feature engineering and [reducing] false positives.
… That's the most impactful thing to improve accuracy of these machine-
learning models."

Paper co-authors are: lead author Roy Wedge, a former researcher in the
Data to AI Lab at LIDS; James Max Kanter '15, SM '15; and Santiago
Moral Rubio and Sergio Iglesias Perez of Banco Bilbao Vizcaya
Argentaria.

Extracting "deep" features

Three years ago, Veeramachaneni and Kanter developed Deep Feature
Synthesis (DFS), an automated approach that extracts highly detailed
features from any data, and decided to apply it to financial transactions.

Enterprises will sometimes host competitions where they provide a
limited dataset along with a prediction problem such as fraud. Data
scientists develop prediction models, and a cash prize goes to the most
accurate model. The researchers entered one such competition and
achieved top scores with DFS.

However, they realized the approach could reach its full potential if
trained on several sources of raw data. "If you look at what data
companies release, it's a tiny sliver of what they actually have,"
Veeramachaneni says. "Our question was, 'How do we take this
approach to actual businesses?'"
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Backed by the Defense Advanced Research Projects Agency's Data-
Driven Discovery of Models program, Kanter and his team at
FeatureLabs—a spinout commercializing the technology—developed an
open-source library for automated feature extraction, called
Featuretools, which was used in this research.

The researchers obtained a three-year dataset provided by an
international bank, which included granular information about
transaction amount, times, locations, vendor types, and terminals used. It
contained about 900 million transactions from around 7 million
individual cards. Of those transactions, around 122,000 were confirmed
as fraud. The researchers trained and tested their model on subsets of
that data.

In training, the model looks for patterns of transactions and among cards
that match cases of fraud. It then automatically combines all the
different variables it finds into "deep" features that provide a highly
detailed look at each transaction. From the dataset, the DFS model
extracted 237 features for each transaction. Those represent highly
customized variables for card holders, Veeramachaneni says. "Say, on
Friday, it's usual for a customer to spend $5 or $15 dollars at Starbucks,"
he says. "That variable will look like, 'How much money was spent in a
coffee shop on a Friday morning?'"

It then creates an if/then decision tree for that account of features that
do and don't point to fraud. When a new transaction is run through the
decision tree, the model decides in real time whether or not the
transaction is fraudulent.

Pitted against a traditional model used by a bank, the DFS model
generated around 133,000 false positives versus 289,000 false positives,
about 54 percent fewer incidents. That, along with a smaller number of
false negatives detected—actual fraud that wasn't detected—could save
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the bank an estimated 190,000 euros, the researchers estimate.

Stacking primitives

The backbone of the model consists of creatively stacked "primitives,"
simple functions that take two inputs and give an output. For example,
calculating an average of two numbers is one primitive. That can be
combined with a primitive that looks at the time stamp of two
transactions to get an average time between transactions. Stacking
another primitive that calculates the distance between two addresses
from those transactions gives an average time between two purchases at
two specific locations. Another primitive could determine if the
purchase was made on a weekday or weekend, and so on.

"Once we have those primitives, there is no stopping us for stacking
them … and you start to see these interesting variables you didn't think
of before. If you dig deep into the algorithm, primitives are the secret
sauce," Veeramachaneni says.

One important feature that the model generates, Veeramachaneni notes,
is calculating the distance between those two locations and whether they
happened in person or remotely. If someone who buys something at, say,
the Stata Center in person and, a half hour later, buys something in
person 200 miles away, then it's a high probability of fraud. But if one
purchase occurred through mobile phone, the fraud probability drops.

"There are so many features you can extract that characterize behaviors
you see in past data that relate to fraud or nonfraud use cases,"
Veeramachaneni says.

  More information: Paper: "Solving the false positives problem in
fraud prediction using automated feature engineering" 
www.ecmlpkdd2018.org/wp-conten … oads/2018/09/567.pdf
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This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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