

A new approach for designing and
implementing a hybrid systems language

November 28 2018, by Ingrid Fadelli

Composition of models that mix discrete- and continuous-time blocks in
Simulink (R2016b). (a) Basic model. (b) Simulation of basic model. Credit:
Benveniste et al.

1/4

Hybrid systems are systems that exhibit both continuous and discrete
dynamic behavior, allowing more flexibility in modeling dynamic
phenomena. Hybrid systems modeling languages are widely used for the
development of cyber-physical systems, in which control software
interacts with physical devices.

Researchers at Inria and ANSYS/Esterel Technologies have recently
presented a new approach to design and implement hybrid systems
languages. Their method, outlined in a paper in Proceedings of the IEEE,
is based on synchronous language principles and associated compilation
techniques.

Hybrid system modeling tools have evolved from being mere interfaces
to numeric solvers, then became fully fledged languages for
programming executable models of dynamic systems. These models are
generally simulated, tested, debugged and verified at different stages of
their development chain.

In state-of-the-art methods, compilers typically check source models,
produce intermediate representations and generate sequential code for
either efficient simulation or execution on target platforms. However,
these compilation steps are often difficult to design and implement.

The recent study focused on the design, semantics and implementation
of hybrid systems modeling languages. It is based on the assumption that
such languages are programming languages with hybrid systems
semantics, hence presenting a number of new challenges.

"The bottom line is that the complexity of actual hybrid systems
modeling languages makes the definition of a comprehensive formal
static and dynamic semantics difficult to achieve," the researchers write
in their paper. "Far from being abstract philosophical concerns, these
difficulties have practical consequences."

2/4

To address these challenges, the researchers set out to identify a minimal
language kernel of orthogonal programming constructs that is expressive
enough to write realistic hybrid models. They also wished to define
detailed static and dynamic semantics of this language, as well as its
compilation steps.

"The result is a hybrid systems modeling language in which synchronous
programming constructs can be mixed with ordinary differential
equations (ODEs) and zero-crossing events, and a runtime that delegates
their approximation to an off-the-shelf numerical solver," the
researchers explain in their paper. "We propose an ideal semantics based
on nonstandard analysis, which defines the execution of a hybrid model
as an infinite sequence of infinitesimally small time steps."

The semantics framework proposed by the researchers can be used to
specify and prove three essential compilation steps. First, it leads to a
type system that guarantees that a continuous-time signal is never used in
situations where a discrete-time signal is expected, and vice versa. In
addition, it ensures the absence of combinatorial loops, as well as the
generation of statically scheduled code for efficient execution.

"Our approach has been evaluated in two implementations: the academic
language Zélus, which extends a language reminiscent of Lustre with
Odes and zero-crossing events, and the industrial prototype Scade
Hybrid, a conservative extension of Scade 6," the researchers write in
their paper.

Compared to other tools and languages, such as Ptolemy, the approach
used by the researchers favors the detection of unsafe models at compile
time. The consequence of this is that some good models are rejected,
mainly because the resulting type systems are not expressive enough.
Further experimental studies could help to determine whether these type
systems are overly constraining.

3/4

https://techxplore.com/tags/hybrid+systems/
https://techxplore.com/tags/semantics/
https://techxplore.com/tags/language/

"The discovery of numerical difficulties is related to stiffness remains
runtime, and rules out the need for overly restrictive programming
disciplines in industrial contexts," the researchers write in their paper.
"Performing rich analyses at compile time, while constraining the users,
may detect errors in models early; it also allows for removing runtime
checks and to statically schedule the computation of the step function
and the reset actions, which leads to more efficient code."

 More information: Albert Benveniste et al. Building a Hybrid Systems
Modeler on Synchronous Languages Principles, Proceedings of the IEEE
(2018). DOI: 10.1109/JPROC.2018.2858016

© 2018 Science X Network

Citation: A new approach for designing and implementing a hybrid systems language (2018,
November 28) retrieved 23 April 2024 from https://techxplore.com/news/2018-11-approach-
hybrid-language.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://dx.doi.org/10.1109/JPROC.2018.2858016
https://techxplore.com/news/2018-11-approach-hybrid-language.html
https://techxplore.com/news/2018-11-approach-hybrid-language.html
http://www.tcpdf.org

