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Computer vision in the dark using recurrent
CNNs

December 7 2018, by Ingrid Fadelli
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Architecture and example data. a) Architecture of gruCNN. Each channels
activity depends on both the current input as well as the previous state. b)
Classification performance of example gruCNN and cCNN when all test
sequences had an SNR of 1/4. ¢) Original image and image with different SNRs
for a firetruck (category truck) a reindeer (category deer), and a dog, shown
without jitter. d—k) Color coded predicted probabilities (output of softmax) of
the correct (positive) image category for gruCNN (d-g) and cCNN (h-k).
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Horizontal axes show predicted probabilities over 51 frames, vertical axes over a
range of SNRs. d) & h) and e) & 1) correspond to performance in the fire truck
and reindeer examples, respectively. The predictive probability at low SNRs
continue improving over frames for the gruCNN predictions, but are relatively
constant for the cCNN. f) & j) Data for the third example (the dog), in which the
gruCNN fails (which is rare) while the cCNN predicts the category correctly at
most SNRs. The average predicted probability for correct (positive) image
category for all 10,000 test images is displayed in g) & k). Credit: Till S.
Hartmann/arXiv:1811.08537 [cs.CV].

Over the past few years, classical convolutional neural networks
(cCNNs) have led to remarkable advances in computer vision. Many of
these algorithms can now categorize objects in good quality images with
high accuracy.

However, in real-world applications, such as autonomous driving or
robotics, imaging data rarely includes pictures taken under ideal lighting
conditions. Often, the images that CNNs would need to process feature
occluded objects, motion distortion, or low signal to noise ratios (SNRs),
either as a result of poor image quality or low light levels.

Although cCNNs have also been successfully used to de-noise images
and enhance their quality, these networks cannot combine information
from multiple frames or video sequences and are hence easily
outperformed by humans on low quality images. Till S. Hartmann, a
neuroscience researcher at Harvard Medical School, has recently carried
out a study that addresses these limitations, introducing a new CNN
approach for analyzing noisy images.

Hartmann, who has a background in neuroscience, has spent over a
decade studying how humans perceive and process visual information. In
recent years, he became increasingly fascinated by the similarities
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between deep CNNs used in computer vision and the brain's visual
system.

In the visual cortex, area of the brain specialized in processing visual
input, the majority of neural connections are made in lateral and
feedback directions. This suggests that there is a lot more to visual
processing than the techniques employed by cCNNs. This motivated
Hartmann to test convolutional layers that incorporate recurrent
processing, which is vital for the human brain's processing of visual
information.
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Detailed comparison of cCNN with Bayesian inference and gruCNN
performance over a large range of SNR levels. Each model architecture was
tested after training with slightly higher SNRs (default training) and after
training with slightly lower SNRs (low training). a) & b) Percent correct over the
course of 51 frames for different SNRs (color coded) using default training for
a) the cCNN (with Bayesian Inference) and b) the gruCNN. c¢) Dots: correct
classification for the model architectures at the last frame. Jitter in SNR values
was added to increase readability of plots, but was not in the data. Lines: mean
performance of the five models per architecture. d) Mean performance of
gruCNNs minus mean performance of cCNNs for models trained with default
and lower SNRs (green and red, respectively). SNR levels used during training
are indicated by dots. Credit: Till S. Hartmann/arXiv:1811.08537 [cs.CV].

Using recurrent connections within the CNN's convolutional layers,
Hartmann's approach ensures that networks are better equipped to
process pixel noise, such as that present in images taken under poor light
conditions. When tested on simulated noisy video sequences, recurrent
CNNs (gruCNNs) performed far better than classical approaches,
successfully classifying objects in simulated low quality videos, such as
those taken at night.

Adding recurrent connections to a convolutional layer ultimately adds
spatially constrained memory, allowing the network to learn how to
integrate information over time before the signal is too abstract. This
feature can be particularly helpful when there is low signal quality, such
as in images that are noisy or taken in poor light conditions.

In his study, Hartmann found that cCNNs performed well on images
with high SNRs, gruCNNs, outperformed them on low SNR images.
Even adding Bayes-optimal temporal integrations, which allow cCNNs
to integrate multiple image frames, did not match gruCNN performance.
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Hartmann also observed that at low SNRs, gruCNNs predictions had
higher confidence levels than those produced by cCNNss.

While the human brain has evolved to see in the darkness, most existing
CNN are not yet equipped to process blurry or noisy images. By
providing networks with the capacity to integrate images over time, the
approach devised by Hartmann could eventually enhance computer
vision to the point that it matches, or even exceeds, human performance.
This could be huge for applications such as self-driving cars and drones,
as well as in other situations where a machine needs to 'see' under non-
ideal lighting conditions.

The study carried out by Hartmann could pave the way for the
development of more advanced CNNs that can analyze images taken
under poor light conditions. Using recurrent connections in the early
stages of neural network processing could vastly improve computer
vision tools, overcoming the limitations of classical CNN approaches in
processing noisy images or video streams.

As a next step, Hartmann could expand the scope of his research by
exploring real-life applications of gruCNN:ss, testing them in a wide range
of real-world scenarios. Potentially, his approach could also be used to
enhance the quality of amateur or shaky home videos.

More information: Seeing in the dark with recurrent convolutional
neural networks. arXiv:1811.08537 [cs.CV]. arxiv.org/abs/1811.08537
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