
 

Box of Pain: A new tracer and fault injector
for distributed systems

May 3 2019, by Ingrid Fadelli

  
 

  

The happens-before relationship of accept and connect system calls that Box of
Pain derives. The colors indicate different threads. Box of Pain is able to derive
that connect↑ occurs after accept↓, because the latter causes the former. Credit:
Bittman, Miller & Alvaro.

In computer science, distributed systems are systems with components
located on different devices, which communicate with one another.
While these systems have become increasingly common, they are
typically filled with bugs.

A few researchers have tried to develop tools to find bugs in distributed
systems and remove them, yet a tangible solution has not yet emerged.
Overall, tools that 'perturb' executions can test how robust a system is to
faults, while tools that 'observe' executions allow researchers to better
understand the system-wide effects of such faults.

Most existing approaches and techniques for fault detection and

1/6

https://techxplore.com/tags/fault+detection/


 

debugging are incomplete or based on testing, which means that they
might be helpful to find bugs but not to eliminate them. Aware of this
gap in the literature, a team of researchers at UC Santa Cruz has recently
developed a new technique, called Box of Pain, for tracing and fault
injection in unmodified distributed systems.

"Our lab is obsessed with fault tolerance," Peter Alvaro, one of the
researchers who carried out the study, told TechXplore. "Distributed
systems, that is, systems that require the cooperation of a collection of
independent computers to fulfil their purpose, are ubiquitous, but they
are extremely hard to reason about, program and debug. Fault injection
techniques can increase confidence that distributed systems can actually
tolerate the faults (e.g. machine crashes, network partitions, etc.) that
they were designed to tolerate, while observability infrastructure (e.g.
tracing) can help us better understand how these systems function during
faults."

Alvaro's lab primarily focuses on an area of research called experiment
selection, which entails automatically choosing faults that are most likely
to drive a system into a bad state. He and his colleagues use tracing
infrastructure to observe executions, build models of systems that
produce traces and then use these models to identify 'interesting' faults to
inject into a system.

"Unfortunately, our approach assumes that systems are already equipped
with both tracing and fault injection infrastructure; to first observe, and
ultimately perturb the system execution," Alvaro said. "In practice, many
systems are not, and adding these capabilities can be expensive and time
consuming. We found ourselves asking what it would take to be able to
perform tracing and fault injection transparently, on unmodified
systems, so that we could apply our bug-finding approaches to 'any'
distributed software. Box of Pain is where we eventually landed."

2/6

https://techxplore.com/tags/fault+tolerance/


 

Box of Pain, the approach devised by the researchers at UC Santa Cruz,
is essentially a framework for tracing a complex computer system to
better understand its behavior, simulate faults within it and observe what
happens when something goes wrong. For instance, Box of Pain can
simulate a broken network and compare the behavior of the programs
with their behavior under normal conditions.

"Our technique does this by observing key events in the programs'
behaviors, such as communication events, crashes, and exit conditions,"
Daniel Bittman, another researcher involved in the study, explained.
"Using this information, it live-builds an understanding of how
computers interact, allowing automated bug-finding software to
experiment with disrupting systems automatically."

In contrast with other fault injection systems, Box of Pain employs a
lightweight approach to tracing, focusing on simulating the effects of
partial failures on communication rather than exploring the failures
themselves. In their study, the researchers evaluated their technique and
found that it attained highly promising results, both in observing faults
and perturbing distributed systems.

"One important finding was what we were able to do with our somewhat
limited view of a complex computer system," Bittman said. "Since our
goal was to understand the behavior of a system transparently (that is,
without needing to make changes to the system under study), the
information we collect about it is pretty generic."

According to Bittman, a key first step in their research was to show that
they could successfully reconstruct the communication pattern of a
complex system just by looking at the individual events of each process
and that this could be done in real-time. This is crucial because the
researchers wanted their model of fault injection to allow them to tell a
system: 'drop all communication between program A and B after B sends

3/6



 

a message to A'. If they were unable to reconstruct a system's
communication pattern until after it finished running, however, this
phrase would be impossible to convey.

"A second important finding was the number of ways in which a
particular system execution could differ while achieving the same
result," Bittman added. "Several interacting computers might run at
different speeds, and therefore the way they interact might be different
between runs of the same system with the same inputs, even if the result
of the execution is the same. This has an unfortunate consequence:
deciding when to inject a fault in a system becomes much harder.
However, we were able to provide some initial evidence that the
problem, in practice, is not as bad as it might seem."

The results gathered by Alvaro, Bittman and their colleague Ethan Miller
have substantial implications for fault injection, as their approach could
make deciding on and performing fault injection experiments far easier.
In addition, their study could inform the development of debugging
frameworks, which would report to developers with what confidence
level their system is bug-free under particular circumstances.

"This research has only just begun," Alvaro said. "in fact, as we readily
admit in the paper, we have barely even begun using Box of Pain for its
stated purpose of finding and isolating bugs in distributed systems. We
published this early report because we were excited to tell the
community about the development."

According to Alvaro, there are two key directions in which their
research could be developed further in the near future. Firstly, although
their study provides tantalizing initial evidence supporting their
hypotheses, future studies might need to run more experimental tests to
further evaluate their assumptions.

4/6



 

"We argue that a distributed fault injector need only focus on perturbing
edges in a system's communication graph to find the most interesting
bugs, massively shrinking the 'surface area' on which we need to focus,"
Alvaro explained. "We now need to show that this is true by finding
some new bugs! What is more, we argue that although the space of
'possible' executions is exponentially large and intractable to cover, the
likelihood of different executions (at the level of abstraction we capture
in the communication graph) drops off very steeply, making it it possible
to mostly cover this space efficiently."

To show that the effect they observed is true and can be generalized
across different scenarios, the researchers will need to scale up their
experiments to larger and richer systems. In the long-term, they also
envision a tight integration of Box of Pain with a targeted experiment
selector, such as lineage-driven fault injection, as this might help to
generalize this selector to arbitrary distributed infrastructures.

"Over the next six months our lab plans to experiment on data stores
such as Cassandra, Redis and MongoDB, on message queues such as
Kafka and RabbitMQ, and on coordination services such as EtcD and
Zookeeper," Alvaro added. "We also plan to explore pedagogical
applications of Box of Pain, choosing custom fault injection schedules
for project submitted by students in UC Santa Cruz's distributed systems
course. This way, it can assist instructors in grading student projects as
well as assist students by providing rich explanations of any bugs that it
identifies in their programs."

The study carried out by Alvaro, Bittman and Miller was pre-published
on arXiv and has been accepted for publication by HotCloud 2019, a
workshop on cloud computing that will take place in July in Renton,
Washington. This workshop will be a great chance to solicit feedback
about Box of Pain from the distributed systems community, which could
help the researchers to determine which avenues for future work they

5/6

https://techxplore.com/tags/fault/


 

should pursue first.

  More information: Co-evolving tracing and fault injection with Box
of Pain. arXiv:1903.12226 [cs.DC]. arxiv.org/abs/1903.12226

© 2019 Science X Network

Citation: Box of Pain: A new tracer and fault injector for distributed systems (2019, May 3)
retrieved 20 April 2024 from
https://techxplore.com/news/2019-05-pain-tracer-fault-injector.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

https://arxiv.org/abs/1903.12226
https://techxplore.com/news/2019-05-pain-tracer-fault-injector.html
http://www.tcpdf.org

