L 4
"‘ech?splore

Toward artificial intelligence that learns to
write code

June 17 2019, by Kim Martineau

Researchers have developed a flexible way of combining deep learning and
symbolic reasoning to teach computers to write short computer programs. Here,
Armando Solar-Lezama (left), a professor at CSAIL, speaks with graduate
student Maxwell Nye. Credit: Kim Martineau

Learning to code involves recognizing how to structure a program, and

1/5

Tech?$plore

how to fill in every last detail correctly. No wonder it can be so
frustrating.

A new program-writing Al, SketchAdapt, offers a way out. Trained on
tens of thousands of program examples, SketchAdapt learns how to
compose short, high-level programs, while letting a second set of
algorithms find the right sub-programs to fill in the details. Unlike
similar approaches for automated program-writing, SketchAdapt knows
when to switch from statistical pattern-matching to a less efficient, but
more versatile, symbolic reasoning mode to fill in the gaps.

"Neural nets are pretty good at getting the structure right, but not the
details," says Armando Solar-Lezama, a professor at MIT's Computer
Science and Artificial Intelligence Laboratory (CSAIL). "By dividing up
the labor—Ietting the neural nets handle the high-level structure, and
using a search strategy to fill in the blanks—we can write efficient
programs that give the right answer."

SketchAdapt is a collaboration between Solar-Lezama and Josh
Tenenbaum, a professor at CSAIL and MIT's Center for Brains, Minds
and Machines. The work will be presented at the International
Conference on Machine Learning June 10-15.

Program synthesis, or teaching computers to code, has long been a goal
of Al researchers. A computer that can program itself is more likely to
learn language faster, converse fluently, and even model human
cognition. All of this drew Solar-Lezama to the field as a graduate
student, where he laid the foundation for SketchAdapt.

Solar-Lezama's early work, Sketch, is based on the idea that a program's
low-level details could be found mechanically if a high-level structure is
provided. Among other applications, Sketch inspired spinoffs to
automatically grade programming homework and convert hand-drawn

2/5

https://arxiv.org/pdf/1902.06349.pdf
https://people.csail.mit.edu/asolar/papers/Solar-Lezama09.pdf

Tech?$plore

diagrams into code. Later, as neural networks grew in popularity,
students from Tenenbaum's computational cognitive science lab
suggested a collaboration, out of which SketchAdapt formed.

Rather than rely on experts to define program structure, SketchAdapt
figures it out using deep learning. The researchers also added a twist:
When the neural networks are unsure of what code to place where,
SketchAdapt is programmed to leave the spot blank for search
algorithms to fill.

"The system decides for itself what it knows and doesn't know," says the
study's lead author, Maxwell Nye, a graduate student in MIT's
Department of Brain and Cognitive Sciences. "When it gets stuck, and
has no familiar patterns to draw on, it leaves placeholders in the code. It
then uses a guess-and-check strategy to fill the holes."

The researchers compared SketchAdapt's performance to programs
modeled after Microsoft's proprietary RobustFill and DeepCoder
software, successors to Excel's FlashFill feature, which analyzes adjacent
cells to offer suggestions as you type—Ilearning to transform a column of
names into a column of corresponding email addresses, for example.
RobustFill uses deep learning to write high-level programs from
examples, while DeepCoder specializes in finding and filling in low-level
details.

The researchers found that SketchAdapt outperformed their
reimplemented versions of RobustFill and DeepCoder at their respective
specialized tasks. SketchAdapt outperformed the RobustFill-like
program at string transformations; for example, writing a program to
abbreviate Social Security numbers as three digits, and first names by
their first letter. SketchAdapt also did better than the DeepCoder-like
program at writing programs to transform a list of numbers. Trained only
on examples of three-line list-processing programs, SketchAdapt was

3/5

https://techxplore.com/tags/neural+networks/
https://arxiv.org/pdf/1703.07469.pdf
https://arxiv.org/pdf/1611.01989.pdf

Tech?$plore

better able to transfer its knowledge to a new scenario and write correct
four-line programs.

In yet another task, SketchAdapt outperformed both programs at
converting math problems from English to code, and calculating the
answer.

Key to its success is the ability to switch from neural pattern-matching to
a rules-based symbolic search, says Rishabh Singh, a former graduate
student of Solar-Lezama's, now a researcher at Google Brain.
"SketchAdapt learns how much pattern recognition is needed to write
familiar parts of the program, and how much symbolic reasoning is
needed to fill in details which may involve new or complicated
concepts."

SketchAdapt is limited to writing very short programs. Anything more
requires too much computation. Nonetheless, it's intended more to
complement programmers rather than replace them, the researchers say.
"Our focus is on giving programming tools to people who want them,"
says Nye. "They can tell the computer what they want to do, and the
computer can write the program."

Programming, after all, has always evolved. When Fortran was
introduced in the 1950s, it was meant to replace human programmers.
"Its full name was Fortran Automatic Coding System, and its goal was to
write programs as well as humans, but without the errors," says Solar-
Lezama. "What it really did was automate much of what programmers
did before Fortran. It changed the nature of programming."

More information: Learning to Infer Program Sketches.
arXiv:1902.06349 [cs.Al] arxiv.org/abs/1902.06349

4/5

https://arxiv.org/abs/1902.06349

Tech?$plore

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT

research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Toward artificial intelligence that learns to write code (2019, June 17) retrieved 9 April
2024 from https://techxplore.com/news/2019-06-artificial-intelligence-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

5/5

http://web.mit.edu/newsoffice/
https://techxplore.com/news/2019-06-artificial-intelligence-code.html
http://www.tcpdf.org

