

Why more software development needs to go
to the machines

October 28 2019

Justin Gottschlich of Intel Labs leads a team of machine programming
researchers. Their aim is to automate software development to reduce coding
errors and address a shortage of trained expert programmers. Credit: Walden
Kirsch/Intel Corporation

Our expert: Justin Gottschlich leads the Machine Programming Research

1/5

(MPR) team in the Systems and Software Research Lab. Justin's newly-
formed research group focuses on the pioneering promise of machine
programming, which is a fusion of machine learning, formal methods,
programming languages, compilers and computer systems.

His simple explanation of machine programming: MPR uses forms of
machine learning and other automatic methods to create software
capable of creating its own software. It's called machine programming
and is fundamentally about automating software development and
maintenance. When fully realized, machine programming will enable
everyone to express their creativity and develop their own software
without writing a single line of code.

Machine programming's promise: In today's technological landscape,
software is integrated into almost everything we do. It controls many
aspects of our mobile devices—laptops, tablets, phones. It connects us to
the internet and drives our social media feeds. It virtualizes our data
centers and makes our homes more intelligent. But developing and
maintaining software is a time-consuming and error-prone process,
Justin says. "I believe we can create a society where everyone can create
software, but machines will handle the 'programming' part," he says.
"Thus, 'machine programming.'"

A shortage of human programmers: A core problem for Intel and other
leading tech companies, according to Justin, is that they are running low
on senior developers—a shortage that crimps the amount of
programming across all industries. According to code.org, there are
500,000 open programming positions available in the U.S.
alone—compared with an annual crop of 50,000 graduating computer
science majors. A similar shortage can be found across the European
Union. In the programming jobs market, Justin says, at best only 10% of
the people filling those jobs have the computer science training to
become top-level advanced developers. With today's heterogeneous

2/5

https://techxplore.com/tags/machines/
https://techxplore.com/tags/tech+companies/

hardware—CPUs, GPUs, FPGAs, ASICs, neuromorphic and, soon,
quantum chips—it will become difficult, perhaps impossible, to find
developers who can correctly, efficiently, and securely program across
all of that hardware.

Now is the time: Machine programming is a fusion of different fields. It
uses automatic programming technique, from precise (e.g., formal
program synthesis) to probabilistic (e.g., differentiable programming)
methods. It also uses and learns from everything we've built in hardware
and software to date. Researchers have dabbled in machine
programming since the 1950s, Justin says. "But today is different. We're
at an inflection point with new machine learning algorithms, new and
improved hardware, and rich and dense programming data. These are the
three essential ingredients that we believe enable machine
programming." One example is illustrated by recent genetic algorithm
(GA) research from Justin's team, which illustrates how the fitness
function of a genetic algorithm—a complicated machine learning
heuristic developed by expert programmers—can be automated. Justin
says this work likely wouldn't have been possible just a few years ago.

Refusing to accept bugs: Almost all large-scale software today (e.g.,
operating systems, browsers, social media platforms) includes accuracy,
performance or security bugs. "Our latest NeurIPS '19 paper provides
early evidence that certain types of bugs that have historically evaded
even expert programmer detection can be automatically detected with
machine programming, requiring zero human intervention," Justin says.
"The next step is to automatically fix them."

From 500,000 lines of code to 500: Justin points to a well-known
example of machine programming's benefits. Google Translate, a service
that automatically translates among languages, was built by engineers
who hand-coded around 500,000 lines using classical programming
techniques. With the advent of machine programming, Google rewrote

3/5

its code, partially using differentiable programming (one small slice of
the overall machine programming pie). That rewrite decreased the code
base from 500,000 lines to 500 lines, a 1,000x reduction. "Not only did
the code size shrink by 1,000 times," Justin says, "the accuracy of the
system actually improved—it's incredible."

More programming jobs, not fewer: Machine programming will not
eliminate jobs, Justin contends, but instead create them—possibly
millions of them. The more menial aspects of programming will be
automated, he says, which is the goal. With machine programming, he
adds, "our blue-sky vision is so long as you can express your ideas (as we
call it—intention) in some way that the machine can recognize—be it
natural language, visual diagrams or gestures—machine programming
builds a path for you to create your own software." To begin building
these advanced machine programming systems, Justin says, we'll rely
heavily on a community of programmers and scientists—those who can
work across platforms, machine learning and formal techniques,
heterogeneous hardware, and many programming languages. Justin and
team outline their future vision of machine programming in a paper
jointly published with MIT researchers, "The Three Pillars of Machine
Programming."

 More information: Justin Gottschlich et al. The three pillars of
machine programming, Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming
Languages - MAPL 2018 (2018). DOI: 10.1145/3211346.3211355

Provided by Intel

Citation: Why more software development needs to go to the machines (2019, October 28)
retrieved 18 April 2024 from https://techxplore.com/news/2019-10-software-machines.html

4/5

https://techxplore.com/tags/software/
https://techxplore.com/tags/programming+languages/
https://dl.acm.org/citation.cfm?id=3211355
https://dl.acm.org/citation.cfm?id=3211355
http://dx.doi.org/10.1145/3211346.3211355
https://techxplore.com/news/2019-10-software-machines.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

