
 

How to design and control robots with
stretchy, flexible bodies

November 21 2019, by Rob Matheson

  
 

  

An MIT-invented model efficiently and simultaneously optimizes control and
design of soft robots for target tasks, which has traditionally been a monumental
undertaking in computation. The model, for instance, was significantly faster and
more accurate than state-of-the-art methods at simulating how quadrupedal
robots (pictured) should move to reach target destinations. Credit: Andrew
Spielberg, Daniela Rus, Wojciech Matusik, Allan Zhao, Tao Du, and Yuanming
Hu
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MIT researchers have invented a way to efficiently optimize the control
and design of soft robots for target tasks, which has traditionally been a
monumental undertaking in computation.

Soft robots have springy, flexible, stretchy bodies that can essentially
move an infinite number of ways at any given moment. Computationally,
this represents a highly complex "state representation," which describes
how each part of the robot is moving. State representations for soft
robots can have potentially millions of dimensions, making it difficult to
calculate the optimal way to make a robot complete complex tasks.

At the Conference on Neural Information Processing Systems next
month, the MIT researchers will present a model that learns a compact,
or "low-dimensional," yet detailed state representation, based on the
underlying physics of the robot and its environment, among other
factors. This helps the model iteratively co-optimize movement control
and material design parameters catered to specific tasks.

"Soft robots are infinite-dimensional creatures that bend in a billion
different ways at any given moment," says first author Andrew
Spielberg, a graduate student in the Computer Science and Artificial
Intelligence Laboratory (CSAIL). "But, in truth, there are natural ways
soft objects are likely to bend. We find the natural states of soft robots
can be described very compactly in a low-dimensional description. We
optimize control and design of soft robots by learning a good description
of the likely states."

In simulations, the model enabled 2-D and 3-D soft robots to complete
tasks—such as moving certain distances or reaching a target spot —more
quickly and accurately than current state-of-the-art methods. The
researchers next plan to implement the model in real soft robots.

Joining Spielberg on the paper are CSAIL graduate students Allan Zhao,
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Tao Du, and Yuanming Hu; Daniela Rus, director of CSAIL and the
Andrew and Erna Viterbi Professor of Electrical Engineering and
Computer Science; and Wojciech Matusik, an MIT associate professor
in electrical engineering and computer science and head of the
Computational Fabrication Group.

"Learning-in-the-loop"

Soft robotics is a relatively new field of research, but it holds promise
for advanced robotics. For instance, flexible bodies could offer safer
interaction with humans, better object manipulation, and more
maneuverability, among other benefits.

Control of robots in simulations relies on an "observer," a program that
computes variables that see how the soft robot is moving to complete a
task. In previous work, the researchers decomposed the soft robot into
hand-designed clusters of simulated particles. Particles contain important
information that help narrow down the robot's possible movements. If a
robot attempts to bend a certain way, for instance, actuators may resist
that movement enough that it can be ignored. But, for such complex
robots, manually choosing which clusters to track during simulations can
be tricky.

Building off that work, the researchers designed a "learning-in-the-loop
optimization" method, where all optimized parameters are learned
during a single feedback loop over many simulations. And, at the same
time as learning optimization—or "in the loop"—the method also learns
the state representation.

The model employs a technique called a material point method (MPM),
which simulates the behavior of particles of continuum materials, such
as foams and liquids, surrounded by a background grid. In doing so, it
captures the particles of the robot and its observable environment into
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pixels or 3-D pixels, known as voxels, without the need of any additional
computation.

In a learning phase, this raw particle grid information is fed into a
machine-learning component that learns to input an image, compress it
to a low-dimensional representation, and decompress the representation
back into the input image. If this "autoencoder" retains enough detail
while compressing the input image, it can accurately recreate the input
image from the compression.

In the researchers' work, the autoencoder's learned compressed
representations serve as the robot's low-dimensional state representation.
In an optimization phase, that compressed representation loops back into
the controller, which outputs a calculated actuation for how each particle
of the robot should move in the next MPM-simulated step.

Simultaneously, the controller uses that information to adjust the optimal
stiffness for each particle to achieve its desired movement. In the future,
that material information can be useful for 3-D-printing soft robots,
where each particle spot may be printed with slightly different stiffness.
"This allows for creating robot designs catered to the robot motions that
will be relevant to specific tasks," Spielberg says. "By learning these
parameters together, you keep everything as synchronized as much as
possible to make that design process easier."

Faster optimization

All optimization information is, in turn, fed back into the start of the
loop to train the autoencoder. Over many simulations, the controller
learns the optimal movement and material design, while the autoencoder
learns the increasingly more detailed state representation. "The key is we
want that low-dimensional state to be very descriptive," Spielberg says.
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After the robot gets to its simulated final state over a set period of
time—say, as close as possible to the target destination—it updates a
"loss function." That's a critical component of machine learning, which
tries to minimize some error. In this case, it minimizes, say, how far
away the robot stopped from the target. That loss function flows back to
the controller, which uses the error signal to tune all the optimized
parameters to best complete the task.

If the researchers tried to directly feed all the raw particles of the
simulation into the controller, without the compression step, "running
and optimization time would explode," Spielberg says. Using the
compressed representation, the researchers were able to decrease the
running time for each optimization iteration from several minutes down
to about 10 seconds.

The researchers validated their model on simulations of various 2-D and
3-D biped and quadruped robots. They researchers also found that, while
robots using traditional methods can take up to 30,000 simulations to
optimize these parameters, robots trained on their model took only about
400 simulations.

Deploying the model into real soft robots means tackling issues with real-
world noise and uncertainty that may decrease the model's efficiency
and accuracy. But, in the future, the researchers hope to design a full
pipeline, from simulation to fabrication, for soft robots.
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