
 

If you think the millennium bug was a hoax,
here comes a history lesson

December 31 2019, by Nir Oren

  
 

  

Credit: Helen Stebakov

It's not hard to find echoes of the late 1990s in the zeitgeist. Now as
then, impeachment is on many peoples' minds, and films such as The

1/5

https://www.vulture.com/2019/02/what-the-matrix-predicted-about-life-in-2019.html


 

Matrix and The Sixth Sense continue to influence culture. Another feature
of the same era that perhaps has a more important, if subtler, influence
is the infamous Y2K bug.

Y2K was the great glitch in computer systems that looked capable of
destroying civilisation at the stroke of midnight on the millennium. In
the end, however, nothing much went wrong. Some people started to
wonder if we had been misled all along. In fact, they couldn't have been
more mistaken. Y2K is in danger of becoming one of those moments in
history from which exactly the wrong lessons have been drawn.

Many of the systems that were at risk from the Y2K bug dated from the
1970s, 1980s and early 1990s. This was the era when the alleged
insistence by Bill Gates that "640k [of RAM] ought to be enough for
anybody" was still ringing in people's ears. Even powerful servers had
only a few megabytes of RAM—a fraction of what you would find in 
most ordinary PCs today.

With so little space, programmers were always trying to come up with
ways to conserve memory. Dates were one of those things that were
integral to most computer programmes, and years came to be stored as a
number between "0" and "99"—so for example, "80" would represent
1980. The advantage was that only a single byte of memory would be
used. But with the new millennium soon to come around, it meant that
the year "99" would become "100". As a result, computer programs
would believe that the year was 1900 rather than 2000, which threatened
to raise serious problems.

Bug on out

It looked likely that financial transactions such as accrued interest would
be calculated incorrectly. Monitoring software would suddenly believe it
had expired and ceased to work, while navigation software would not be

2/5

https://www.vulture.com/2019/02/what-the-matrix-predicted-about-life-in-2019.html
https://www.hollywoodreporter.com/heat-vision/sixth-sense-was-more-just-twist-1229339
https://techxplore.com/tags/computer+systems/
https://www.computerworld.com/article/2534312/the%E2%80%94640k%E2%80%94quote-won-t-go-away%E2%80%94%E2%80%94but-did-gates-really-say-it-.html
https://www.computerworld.com/article/2534312/the%E2%80%94640k%E2%80%94quote-won-t-go-away%E2%80%94%E2%80%94but-did-gates-really-say-it-.html
https://www.pcmag.com/feature/367150/how-much-ram-do-i-have-in-my-pc/3


 

able to compute positions correctly. Still more alarming, failures in
individual mission-critical systems might cascade. This could cause
power grids, telecoms networks and financial systems to fail; oil rigs to
stop pumping oil; hospital patient record systems to start prescribing the
wrong drugs.

The sheer scale of such failures would make recovery difficult. This
would potentially affect countries' economies and the wellbeing and even
lives of people around the world. As the US president, Bill Clinton, told
an audience during a speech in 1998: "This is not one of the summer
movies where you can close your eyes during the scary parts."

The computer industry's response involved a massive software rewrite,
with official "Y2K ready" certification issued after extensive testing.
Different solutions were implemented for different systems, depending
on their memory capacity. The best option was to store years as four
digits. Where that was not possible, programmers might instruct a system
to treat, say, dates between "00" and "50" as being in the 2000s, and
years between "51" and "99" as being in the 1900s. This at least allowed
systems to keep functioning.

More problematic were embedded systems where the Y2K issue existed
in hardware rather than software. In such cases, the only solution was to
replace the hardware itself. Estimates of the total cost for Y2K
preparation came in at around US$300 billion, or about US$460 billion
(£351 billion) in today's money – plus a few more billion spent on
addressing issues as they arose after the turn of the century.

The big easy?

When the fateful day came and went with little more than minor
problems, the questions started. A view took root that Y2K had been
overblown—perhaps, for instance, to guarantee a giant pay day for

3/5

https://www.c-span.org/video/?108621-1/year-2000-computer-problem-initiative
http://news.bbc.co.uk/1/hi/talking_point/586938.stm
https://www.usinflationcalculator.com/
https://www.scientificamerican.com/article/the-glitch-that-didnt-ste/


 

programmers. People could point to the fact that some countries, such as
South Korea and Russia, had got away with doing little to mitigate the
problem, not to mention small businesses.

But this ignores the fact that software patches for the bug were rolled out
worldwide. Those who didn't prepare were protected thanks to the
efforts of those who did. There is ample evidence, thanks to
preparedness exercises, code reviews and the like, that if not addressed,
the impact of Y2K would have been much more significant.

Unfortunately, the contrarian view has wormed its way into other
important areas of policy. Climate change deniers and anti-vaccination
activists often raise the lack of impact of the Y2K bug as evidence that
experts are not to be trusted. If we are eventually successful in dealing
with problems like climate change in future, don't be surprised if similar
arguments about wasted time and effort appear.

By that time, the same people will probably also be able to point to a
couple of sequels to the millennium bug that didn't come to much either.
As I mentioned above, ancient software systems still exist which treat all
dates with two digits greater than "50" as occurring in the 1900s. While
most of them should be retired before we get to the next danger year of
2050, the likes of mission-critical systems can be notoriously long-lived.

We can also look forward to the year 2038 problem. This relates to the
fact that Unix systems historically stored dates and times as sequences of
32 ones and zeros, interpreted as the number of seconds since January 1,
1970. When 2038 rolls around, this number will overflow for the same
reason the Y2K bug occurred. Such Unix systems again form the
foundation of many mission critical pieces of software.

The Unix community is well aware of this bug, however, and most of
these systems will again have been replaced long before 2038. So just

4/5

https://www.nationalgeographic.org/encyclopedia/Y2K-bug/
https://catless.ncl.ac.uk/Risks/
https://www.sciencedirect.com/science/article/pii/S0268401298000437
https://techxplore.com/tags/climate+change/
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug


 

like with Y2K, if the world survives these future problems, it will not
have been because it was all hype. The more boring truth is often that a
stitch in time saves nine. Sorry to be the bearer of good news.

Provided by The Conversation

Citation: If you think the millennium bug was a hoax, here comes a history lesson (2019,
December 31) retrieved 26 April 2024 from https://techxplore.com/news/2019-12-millennium-
bug-hoax-history-lesson.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://techxplore.com/news/2019-12-millennium-bug-hoax-history-lesson.html
https://techxplore.com/news/2019-12-millennium-bug-hoax-history-lesson.html
http://www.tcpdf.org

