

Algorithm quickly simulates a roll of loaded
dice

May 29 2020, by Steve Nadis

A new algorithm, called the Fast Loaded Dice Roller (FLDR), simulates the roll
of dice to produce random integers. The dice, in this case, could have any
number of sides, and they are “loaded,” or weighted, to make some sides more
likely to come up than others. Credit: Jose-Luis Olivares, MIT

The fast and efficient generation of random numbers has long been an

1/5

important challenge. For centuries, games of chance have relied on the
roll of a die, the flip of a coin, or the shuffling of cards to bring some
randomness into the proceedings. In the second half of the 20th century,
computers started taking over that role, for applications in cryptography,
statistics, and artificial intelligence, as well as for various
simulations—climatic, epidemiological, financial, and so forth.

MIT researchers have now developed a computer algorithm that might,
at least for some tasks, churn out random numbers with the best
combination of speed, accuracy, and low memory requirements available
today. The algorithm, called the Fast Loaded Dice Roller (FLDR), was
created by MIT graduate student Feras Saad, Research Scientist
Cameron Freer, Professor Martin Rinard, and Principal Research
Scientist Vikash Mansinghka, and it will be presented next week at the
23rd International Conference on Artificial Intelligence and Statistics.

Simply put, FLDR is a computer program that simulates the roll of dice
to produce random integers. The dice can have any number of sides, and
they are "loaded," or weighted, to make some sides more likely to come
up than others. A loaded die can still yield random numbers—as one
cannot predict in advance which side will turn up—but the randomness
is constrained to meet a preset probability distribution. One might, for
instance, use loaded dice to simulate the outcome of a baseball game;
while the superior team is more likely to win, on a given day either team
could end up on top.

With FLDR, the dice are "perfectly" loaded, which means they exactly
achieve the specified probabilities. With a four-sided die, for example,
one could arrange things so that the numbers 1,2,3, and 4 turn up exactly
23 percent, 34 percent, 17 percent, and 26 percent of the time,
respectively.

To simulate the roll of loaded dice that have a large number of sides, the

2/5

https://techxplore.com/tags/computer+algorithm/
https://techxplore.com/tags/dice/
https://techxplore.com/tags/number/

MIT team first had to draw on a simpler source of randomness—that
being a computerized (binary) version of a coin toss, yielding either a 0
or a 1, each with 50 percent probability. The efficiency of their method,
a key design criterion, depends on the number of times they have to tap
into this random source—the number of "coin tosses," in other
words—to simulate each dice roll.

In a landmark 1976 paper, the computer scientists Donald Knuth and
Andrew Yao devised an algorithm that could simulate the roll of loaded
dice with the maximum efficiency theoretically attainable. "While their
algorithm was optimally efficient with respect to time," Saad explains,
meaning that literally nothing could be faster, "it is inefficient in terms
of the space, or computer memory, needed to store that information." In
fact, the amount of memory required grows exponentially, depending on
the number of sides on the dice and other factors. That renders the
Knuth-Yao method impractical, he says, except for special cases, despite
its theoretical importance.

FLDR was designed for greater utility. "We are almost as time
efficient," Saad says, "but orders of magnitude better in terms of
memory efficiency." FLDR can use up to 10,000 times less memory
storage space than the Knuth-Yao approach, while taking no more than
1.5 times longer per operation.

For now, FLDR's main competitor is the Alias method, which has been
the field's dominant technology for decades. When analyzed
theoretically, according to Freer, FLDR has one clear-cut advantage over
Alias: It makes more efficient use of the random source—the "coin
tosses," to continue with that metaphor—than Alias. In certain cases,
moreover, FLDR is also faster than Alias in generating rolls of loaded
dice.

FLDR, of course, is still brand new and has not yet seen widespread use.

3/5

But its developers are already thinking of ways to improve its
effectiveness through both software and hardware engineering. They
also have specific applications in mind, apart from the general, ever-
present need for random numbers. Where FLDR can help most,
Mansinghka suggests, is by making so-called Monte Carlo simulations
and Monte Carlo inference techniques more efficient. Just as FLDR uses
coin flips to simulate the more complicated roll of weighted, many-sided
dice, Monte Carlo simulations use a dice roll to generate more complex
patterns of random numbers.

The United Nations, for instance, runs simulations of seismic activity
that show when and where earthquakes, tremors, or nuclear tests are
happening on the globe. The United Nations also carries out Monte
Carlo inference: running random simulations that generate possible
explanations for actual seismic data. This works by conducting a second
series of Monte Carlo simulations, which randomly test out alternative
parameters for an underlying seismic simulation to find the parameter
values most likely to reproduce the observed data. These parameters
contain information about when and where earthquakes and nuclear tests
might actually have occurred.

"Monte Carlo inference can require hundreds of thousands of times
more random numbers than Monte Carlo simulations," Mansinghka says.
"That's one big bottleneck where FLDR could really help. Monte Carlo
simulation and inference algorithms are also central to probabilistic
programming, an emerging area of AI with broad applications."

Despite its seemingly bright future, FLDR almost did not come to light.
Hints of it first emerged from a previous paper the same four MIT
researchers published at a symposium in January, which introduced a
separate algorithm. In that work, the authors showed that if a
predetermined amount of memory were allocated for a computer
program to simulate the roll of loaded dice, their algorithm could

4/5

https://techxplore.com/tags/random+numbers/

determine the minimum amount of "error" possible—that is, how close
one comes toward meeting the designated probabilities for each side of
the dice.

If one doesn't limit the memory in advance, the error can be reduced to
zero, but Saad noticed a variant with zero error that used substantially
less memory and was nearly as fast. At first he thought the result might
be too trivial to bother with. But he mentioned it to Freer who assured
Saad that this avenue was worth pursuing. FLDR, which is error-free in
this same respect, arose from those humble origins and now has a chance
of becoming a leading technology in the realm of random number
generation. That's no trivial matter given that we live in a world that's
governed, to a large extent, by random processes—a principle that
applies to the distribution of galaxies in the universe, as well as to the
outcome of a spirited game of craps.

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Algorithm quickly simulates a roll of loaded dice (2020, May 29) retrieved 13 March
2024 from https://techxplore.com/news/2020-05-algorithm-quickly-simulates-dice.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://web.mit.edu/newsoffice/
https://techxplore.com/news/2020-05-algorithm-quickly-simulates-dice.html
http://www.tcpdf.org

