

New method ensures complex programs are
bug-free without testing

June 16 2020

Multithreading is one common form of concurrent execution, allowing different
instructions in a program to be processed simultaneously by one or more CPU
cores. Credit: University of Michigan

A team of researchers have devised a way to verify that a class of
complex programs is bug-free without the need for traditional software

1/6

testing. Called Armada, the system makes use of a technique called
formal verification to prove whether a piece of software will output what
it's supposed to. It targets software that runs using concurrent execution,
a widespread method for boosting performance, which has long been a
particularly challenging feature to apply this technique to.

The collaborative effort between the University of Michigan, Microsoft
Research, and Carnegie Mellon was recognized at ACM's Programming
Language Design and Implementation (PDLI 2020) with a Distinguished
Paper Award.

Concurrent programs are known for their complexity, but have been a
vital tool for increasing performance after the raw speed of processors
began to plateau. Through a variety of different methods, the technique
boils down to running multiple instructions in a program simultaneously.
A common example of this is making use of multiple cores of a CPU at
once.

Formal verification, on the other hand, is a means to demonstrate that a
program will always output correct values without having to test it with a
full range of possible inputs. By reasoning about the program as a
mathematical proof, programmers can demonstrate that bugs or errors
are impossible and that its execution is airtight. This overcomes the
shortcoming common to all programs, even without concurrency, that
testing something exhaustively can be either impractical or actually
impossible.

"Fundamentally, unless you try all the possible inputs, you may miss
something," says Prof. Manos Kapritsos, co-author on the paper. "And in
practice, people do miss things. The systems we're talking about are very
complex, there's no way that they can exhaustively try all the behaviors
of the system."

2/6

https://techxplore.com/tags/collaborative+effort/
https://techxplore.com/tags/program/
https://techxplore.com/tags/mathematical+proof/

Formal verification offers an alternative to this need for exhaustive
testing. But the process of generating a satisfactory proof turns out to be
very difficult and time-consuming, especially as you delve into programs
with the added complexity of concurrency.

"The main challenge in concurrent programs comes from the need to
coordinate many different threads of code together," says Upamanyu
Sharma, co-author who worked on the project as an undergraduate at U-
M. "To verify that multi-threaded programs are correct, we have to
reason about the huge number of interleavings that are possible when
multiple methods run at the same time."

This huge number of branching possibilities is difficult to conceptualize
and express through logical formulas.

To date, a variety of proof methods have been designed to deal with
different types of concurrency. In this project, the researchers set out to
design a single framework that allows a user to apply many of these
techniques to verify a single program, with the ultimate goal of cutting
down the effort up front as much as possible.

Armada works by passing a system designed with concurrency through a
series of transformations until it's broken down into a much simpler
representation. The developer just has to prove that each simplified step
really is representative of the more complex program from the previous
step. To do this, the developer uses Armada's high-level syntax to
describe the simpler program and indicate one of the proof methods
needed to support the transformation.

"After every transformation, you want to reason that the system
maintains its correctness or is equivalent to the previous one," Kapritsos
explains.

3/6

The proof itself is then generated automatically for each step by Armada
and run through a prover for verification. In the event the proof fails, the
user changes their description or proof method and generates a new one.

Armada allows a developer to write a short description of their software and the
proof methods they want to use and then generate a significantly longer full
proof automatically. Credit: University of Michigan

In the end, the developer has a simple, high-level specification for the
entire system. They haven't made any changes to the system itself, just
reasoned about its functionality in increasingly abstract steps that are
each still representative of the functioning of the whole program.

"Part of the goal is to support high performance," says Kapritsos. "We
don't want you to rewrite your system just so it can be verifiable."

In the world of verifying concurrent programs, this is perhaps the most

4/6

low-effort technique available. In demonstrations, the team used Armada
to verify four concurrent case studies and show that it achieves
performance equivalent to that of unverified code.

In one test, the team used Armada to verify a data structure
implementation Kapritsos deems "notoriously difficult to reason about."
Called a lock-free queue, the structure is a standard queue (in which the
first data stored is the first to be removed) without the locking
mechanism typically needed to ensure that only one thread can access a
resource at a time in a concurrent program. This implementation
provides better concurrent performance over a locking queue, akin to
using a roundabout instead of a stoplight for traffic control.

Removing that lock introduces a lot of subtlety to the algorithm, and
typically requires long, tedious case analyses to prove its correctness.
Using Armada, the team generated such a proof that ended up 24,540
lines of code long—while only writing 70 lines of code themselves.

Armada uses a verifier to determine that any proof methods in its library
are sound, and it can be extended with more proof methods in the future.

The authors hope that this shorter pipeline will encourage the broader
use of formal verification outside of the most critical systems where the
technique is already justified.

"The aim of our work was to show that it is possible to verify high-
performance concurrent code with little effort," says Sharma. "While
successful in this endeavor, 'low-effort' is relative, and verification is
already associated with a great deal of time and energy. For less critical
applications, program testing and some static analysis is usually deemed
sufficient, especially given its comparatively low cost, even though they
do not provide strong guarantees of correctness."

5/6

"This is not the end, you can always reduce the effort even more,"
Kapritsos says, "but we're trying to leverage as much automation as
possible, making it as simple as we can for the programmer to take any
of these steps."

Broader adoption will rely on continued efforts to lower the cost of
formally verifying real systems, he says, one day finally tipping the
balance against easier, but incomplete, techniques.

"Some people say that verification of concurrent programs lags behind
non-concurrent programs by a decade," Sharma says, "and there is plenty
of work to be done."

This system was presented in the paper "Armada: Low-Effort
Verification of High-Performance Concurrent Programs."

 More information: Jacob R. Lorch et al. Armada: low-effort
verification of high-performance concurrent programs, Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (2020). DOI: 10.1145/3385412.3385971

Provided by University of Michigan

Citation: New method ensures complex programs are bug-free without testing (2020, June 16)
retrieved 20 April 2024 from
https://techxplore.com/news/2020-06-method-complex-bug-free.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://dx.doi.org/10.1145/3385412.3385971
https://techxplore.com/news/2020-06-method-complex-bug-free.html
http://www.tcpdf.org

