L 4
"‘ech?splore

If transistors can't get smaller, then software
developers have to get smarter

June 5 2020
The Top

Technology 01010011 01100011
01101001 01100101 @
01101110 01100011
01100101 00000000
Software Algorithms Hardware architecture

Opportunity Software performance New algorithms Hardware streamlining
engineering

Examples Removing software bloat New problem domains Processor simplification

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the Top of the computing stack, not from those at the Bottom,

Tailoring software to
hardware features

New machine models

Domain specialization

reversing the historical trend.

" The Bottom

for example, semiconductor technology

Credit: Massachusetts Institute of Technology

In 1965, Intel co-founder Gordon Moore predicted that the number of
transistors that could fit on a computer chip would grow exponentially

177

Tech?$plore

—- and they did, doubling about every two years. For half a century
Moore's Law has endured: computers have gotten smaller, faster,
cheaper and more efficient, enabling the rapid worldwide adoption of
PCs, smartphones, high-speed Internet and more.

This miniaturization trend has led to silicon chips today that have almost
unimaginably small circuitry. Transistors, the tiny switches that
implement computer microprocessors, are so small that 1000 of them
laid end-to-end are no wider than a human hair. For a long time, the
smaller the transistors were, the faster they could switch.

But today, we're approaching the limit of how small transistors can get.
As a result, over the last decade researchers have been scratching their
heads to find other ways to improve performance so that the computer
industry can continue to innovate.

While we wait for the maturation of new computing technologies like
quantum, carbon nanotubes, or photonics (which may take a while),
other approaches will be needed to get performance as Moore's Law
comes to an end. In a recent journal article published in Science, a
CSAIL team identifies three key areas to prioritize to continue to deliver
computing speed-ups: better software, new algorithms and more
streamlined hardware.

Senior author Charles E. Leiserson says that the performance benefits
from miniaturization have been so great that, for decades, programmers
have been able to prioritize making the writing of code easier rather than
making the code itself run faster. The inefficiency that this tendency
introduces has been acceptable, because faster computer chips have
always been able to pick up the slack.

"But nowadays, being able to make further advances in fields like
machine learning, robotics and virtual reality will require huge amounts

277

https://techxplore.com/tags/new+algorithms/
https://techxplore.com/tags/computer+chips/

Tech?$plore

of computational power that miniaturization can no longer provide," says
Leiserson, the Edwin Sibley Webster Professor in MIT's Department of
Electrical Engineering and Computer Science (EECS). "If we want to
harness the full potential of these technologies, we must change our
approach to computing."

Leiserson co-wrote the paper with research scientist Neil Thompson,
professor Daniel Sanchez, adjunct professor Butler Lampson and
research scientists Joel Emer, Bradley Kuszmaul and Tao Schardl. It will
be published in the next issue of Science, out this week.

No more Moore

The authors make recommendations about three areas of computing:
software, algorithms and hardware architecture.

With software, they say that programmers' previous prioritization of
productivity over performance has led to problematic strategies like
"reduction": taking code that worked on problem A, and using it to solve
problem B. For example, if someone has to create a system to recognize
yes-or-no voice commands, but doesn't want to code a whole new
custom program, they could take an existing program that recognizes a
wide range of words, and tweak it to respond only to yes-or-no answers.

While this approach reduces coding time, the inefficiencies it creates
quickly compound: if a single reduction is 80 percent as efficient as a
custom solution, and you then add twenty layers of reduction, the code
will ultimately be 100 times less efficient than it could be.

377

https://techxplore.com/tags/voice+commands/

L 4
"‘ech?splore

100,000
SPECint rate 8+ cores I
>
Qo
§ SPECint rate
g 10,000 4to 7 cores
::; SPECint rate
= 2 to 3 cores i
s 0 SPECint = SPECint rate Tk X o SPECInt |
® Lcore ,r T * 2+ cores
2 . IE"
: L : It
g 100 = = Ssle |°° 4 4
g I 5F "'35 2 .
= - “j . ..1 -4 Clock frequency
E =-.- # oA ‘o. ‘
o s
£ 10 . "; h :ﬁ
5 TR b
E n 5§ ¢ r I
3 =Y |" Dennard-scaling era Multicore era
] Lae 8 |
1985 1990 1995 2000 2005 2010 2015

Year

Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel)
performance, and clock-frequency scaling for microprocessors from 1985 to
2015, normalized to the Intel 80386 DX microprocessor in 1985. Credit:
Massachusetts Institute of Technology

"These are the kinds of strategies that programmers have to rethink as
hardware improvements slow down," says Thompson. "We can't keep
doing 'business as usual' if we want to continue to get the speed-ups
we've grown accustomed to."

Instead, the researchers recommend techniques like parallelizing code.
Much existing software has been designed using ancient assumptions that
processors can only do only one operation at a time. But in recent years
multicore technology has enabled complex tasks to be completed
thousands of times faster and in a much more energy-efficient way.

477

Tech?$plore

"Since Moore's Law will not be handing us improved performance on a
silver platter, we will have to deliver performance the hard way," says
Moshe Vardi, a professor in computational engineering at Rice
University who was not part of the project. "This is a great opportunity
for computing research, and the [MIT CSAIL] report provides a road
map for such research."

For algorithms, the team suggests a three-pronged approach that includes
exploring new problem areas, addressing concerns about how algorithms
scale, and tailoring them to better take advantage of modern hardware.

In terms of hardware architecture, the team advocates that hardware be
streamlined so that problems can be solved with fewer transistors and
less silicon. Streamlining includes using simpler processors and creating
hardware tailored to specific applications, like the graphics-processing
unit (GPU) is tailored for computer graphics.

"Hardware customized for particular domains can be much more
efficient and use far fewer transistors, enabling applications to run tens
to hundreds of times faster," says Schardl. "More generally, hardware
streamlining would further encourage parallel programming, creating
additional chip area to be used for more circuitry that can operate in
parallel."

While these approaches may be the best path forward, the researchers
say that it won't always be an easy one. Organizations that use such
techniques may not know the benefits of their efforts until after they've
invested a lot of engineering time. Plus, the speed-ups won't be as
consistent as they were with Moore's Law: they may be dramatic at first,
and then require large amounts of effort for smaller improvements.

Certain companies have already gotten the memo.

5717

https://techxplore.com/tags/hardware+architecture/

Tech?$plore

"For tech giants like Google and Amazon, the huge scale of their data
centers means that even small improvements in software performance
can result in large financial returns," says Thompson. "But while these
firms may be leading the charge, many others will need to take these
issues seriously if they want to stay competitive."

Getting improvements in the areas identified by the team will also
require building up the infrastructure and workforce that make them
possible.

"Performance growth will require new tools, programming languages
and hardware to facilitate more and better performance engineering,"
says Leiserson. "It also means computer scientists being better educated
about how we can make software, algorithms and hardware work
together, instead of putting them in different silos."

100x

Code could be 100x less efficient if you reduce it (say) 20 times.

Reduction is when you take code that worked on problem A, and use it
to solve problem B. (For example, if someone has to create a system to
recognize yes-or-no voice commands, but doesn't want to code a whole
new custom program, they could take an existing program that
recognizes a wide range of words, and tweak it to respond only to yes-or-
no answers.)

While this approach reduces coding time, the inefficiencies it creates
quickly compound: if a single reduction is 80 percent as efficient as a
custom solution, and you then add 20 layers of reduction, the code will
ultimately be 100 times less efficient than it could be.

More information: Charles E. Leiserson et al. There's plenty of room

6/7

Tech?$plore

at the Top: What will drive computer performance after Moore's law?,
Science (2020). DOI: 10.1126/science.aam9744

Provided by Massachusetts Institute of Technology

Citation: If transistors can't get smaller, then software developers have to get smarter (2020, June
5) retrieved 17 July 2024 from

https://techxplore.com/news/2020-06-transistors-smaller-software-smarter.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

17

http://dx.doi.org/10.1126/science.aam9744
https://techxplore.com/news/2020-06-transistors-smaller-software-smarter.html
http://www.tcpdf.org

