

Developing a better way to address
vulnerabilities at the source-code level

December 18 2020, by James Badham

 Credit: LILLIAN MCKINNEY

The need to patch a problem in a program that is embedded in an
existing system, perhaps to introduce or enhance security, is a common
one, according to UC Santa Barbara computer science professor
Giovanni Vigna. "But, why would you do that?" he asks rhetorically.
"Why not just write a different program?"

1/4

"Because sometimes it's not possible, or it would require a very
substantial effort," he answers. "Sometimes, you're given a program to
patch, and you don't have the source code to modify it at that level and
recompile it."

"Many embedded computer systems, such as those in trucks, airplanes
and medical devices, run on software for which the source code and the
original compilation toolchain are unavailable," said Antonio Bianchi, an
assistant professor at Purdue University who studied in Vigna's lab while
pursuing his doctorate at UCSB. "Many old software components
running in these systems are known to contain vulnerabilities, but
patching them is not always easy or even possible."

Vigna, director of the Center for CyberSecurity at UCSB, and Bianchi
are among a group of researchers at UCSB, Purdue and the Swiss
Federal Institute of Technology Lausanne (EPFL) who have received a
four-year, $3.9 million Defense Advanced Research Projects Agency
(DARPA) grant to fund a project called "Assured Micropatching,"
aimed at improving the process of patching code in vulnerable
embedded systems.

"Without source code, patching a vulnerability necessitates editing the
binary code directly," said Bianchi. "Additionally, even in a system that
has been patched, there is no guarantee that the patch will not interfere
with the original functionality of the device. Because of these
difficulties, he said, the code running in embedded systems is often left
unpatched, even when it is known to be vulnerable."

Given that situation, Vigna explained, "You need to look at the program
in a different way; you need to look at the binary code, the machine
code, the ones and zeroes that actually determine the behavior of a
program. But until recently, binary programs were largely considered
static; that is, once you had a compiled program, the thinking went, the

2/4

https://techxplore.com/tags/code/

program could not be changed. Interestingly enough, in the past, it was
often only malicious actors who would focus on modifying binaries to
infect benign binary programs."

But in the evolution of the field, techniques have been developed that
make it possible to consider a binary program as a malleable entity,
something Vigna said, "you can modify, tear apart, and put back
together."

"A lot of research that has come out of UCSB," he added, "has been
focused on this binary manipulation, which has a number of different
applications, from protecting binaries to removing parts of a binary that
you don't need or want because they may include vulnerabilities or
increase the exposure to code-reuse attack, one in which part of the
existing benign code is re-used to perform malicious actions."

Patching at the binary, machine-code level is extremely difficult,
because there, Vigna said, "You don't have the high-level abstractions
that you have in the source code, which allow you to better understand
certain properties of the program."

Instead, he explained, patching the binary code is similar to fixing a
house without having a blueprint or plan of the whole house, so you see
only a tiny square, perhaps a door, and can only make it blue or white.
"You see a tiny granular piece of it, and from there, you have to
reconstruct the high-level vision of everything that's going on and then
make sure that the behavior is the same," Vigna said. "You're down in
the zero-one sequence, trying to figure out where the patch needs to go.
This adds an enormous amount of complexity but also makes the
approach applicable to everything, because everything is binary. Your
heater, your microwave oven—they are all controlled by
microprocessors running binary code."

3/4

https://techxplore.com/tags/microwave+oven/

Naturally, computer scientists want to avoid having to recompile an
entire system to fix a single vulnerability. "I just want to be able to make
this change to this binary that will fix a probable vulnerability and not
have to think about it anymore," Vigna said. "And I want some formal
assurance that I didn't make a mistake and introduce some new
vulnerabilities, or create an unstable program. A lot of work goes into
being able to demonstrate to you that my modification has fixed the
problem without changing the behavior of the program."

Another key to a desirable patching system is that it need not be retested
once the patch is made. "If I can prove to you that the vulnerability is
fixed but that the system will otherwise operate in exactly the same way
as it always did, then you don't have to test it again," Vigna noted. "That
saves time, improves security and employs the system that makes binary
code malleable."

Vigna, working with fellow computer science professor Christopher
Kruegel and with Aravind Machiry, newly minted Ph.D. from UCSB and
soon-to-be professor at Purdue, has developed new technology to verify
security patches, but the proposed technique applies only to source code.
The new DARPA project is focused on extending the approach to binary
code to improve its effectiveness and expand its applicability to the
software running on the millions of devices that surround us every day.

Provided by University of California - Santa Barbara

Citation: Developing a better way to address vulnerabilities at the source-code level (2020,
December 18) retrieved 23 April 2024 from https://techxplore.com/news/2020-12-vulnerabilities-
source-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://techxplore.com/tags/program/
https://techxplore.com/tags/source+code/
https://techxplore.com/tags/binary+code/
https://techxplore.com/tags/binary+code/
https://techxplore.com/news/2020-12-vulnerabilities-source-code.html
https://techxplore.com/news/2020-12-vulnerabilities-source-code.html
http://www.tcpdf.org

