Tech?$plore

SN4KE: A lightweight and scalable
framework for binary mutation testing

March 8 2021, by Ingrid Fadelli

— Coomon 3
ﬁ'grﬁ'g 5 | IOO{% : : %‘g@%
Recovering semantics E Bin-A | E : e
for mutation analysis ' s :
ol
fomen |00|Eo el
' L) ' '
Q Calculate : E- ! | BB | : E Bin-B }
B mutation set H o P B .
B I 5 g | oo g T e '-
s, Z £ 1 woopp 1 g é I
AOR Ny g5 2 - Pl
Random Mutation N 5l 8| E i | i E | :
LCR Selector = o T BinC | . g : | Bin-C | .
=] -]
= e z Mutation Report
HOR g £ E il anioi
= = 100
(] o = 1ain0
ICR P é =
& = =R
ISR g E B Bin-X
= 15 T oyt

Figure 1:SN4KE workflow consists of four stages. First, we pass the binary under test to ddisasm for relocation table reconstruction and
performing symbolization on binary. The resulting GTIRB file is then passed to the mutation engine, where we randomly apply a chosen
technigue. Next, we use ddisasm-pprinter to reassemble the transformed GTIRB into an executable. To make sure the binary is passing the
initial checks, we ran it through the trivial test. Successful candidates are then passed to the SPEC runner to get the mutation report.

Credit: Ahmadi, Kiaei & Emamdoost.

When developers deliver software to their clients, they often also
provide what is known as a 'test suite.' A test suite is a tool that allows
users to test software, unveil any bugs it might have and give developers
a chance to fix these bugs or other potential issues.

In addition to evaluating software, therefore, developers also need to
ascertain the efficacy of a test suite in identifying bugs and errors. One
way to run test suite evaluations is via mutation testing, a technique that

1/5

https://techxplore.com/tags/software/
https://techxplore.com/tags/test/
https://techxplore.com/tags/mutation+testing/

Tech?$plore

generates several 'mutants' of a program by slightly modifying its
original code. While mutation testing tools have proved to be incredibly
helpful, most of them cannot be applied to software that is only available
in binary code (a way of representing texts or instructions for computers
using two symbols, generally '0' and '1").

Researchers at Arizona State University, Worcester Polytechnic Institute
and the University of Minnesota have recently developed SN4KE, a
framework that can be used to carry out mutation analyses at a binary
level. This framework, presented at the Binary Analysis Research (BAR)
NDSS symposium 21 in February, is a new tool to efficiently test suites
for software based on binary codes.

"Our work stems from a similar concept in the software testing domain,"
Mohsen Ahmadi, one of the researchers who carried out the study, told
TechXplore. "In our study, we applied source-level mutation operators
on closed-source programs using two novel binary rewriting techniques."

Researchers apply so-called 'mutation operators' to generate different
variations of an original software program. The ultimate goal of
mutation testing methods is to evaluate how well test suits distinguish an
original binary code from its variations. When this analysis is complete,
a test suite destroys each mutant and generates a 'mutation score," which
is essentially the total number of mutants it killed over the total amount
of mutants it generated.

"One involved factor in achieving a higher mutation score is related to
the reachability of mutated instruction(s), causing an exception that
propagates the error to a noticeable change in the program output,"
Ahmadi said. "The more sections of the code a test suite covers, the
higher the odds are for the test suite to detect the mutants."

Ahmadi and his colleagues created a lightweight and scalable binary

2/5

Tech?$plore

mutation framework with a rich set of mutation strategies inspired from
source-level mutation engines. The main challenge when trying to apply
mutations at a binary level is to recover the semantics lost when
mutations are compiled.

"In our selection of the right set of rewriting tools, we considered the
following factors: 1) architecture-independence, 2) runtime
performance, 3) semantic recovery accuracy," Ahmadi said. "Another
advantage of our research is that we compare two rewriting schemes; one
is based on reassemble-able disassembly, and the other works on top of
full-translation. Given our selection criteria, we opted for Ddisasm (a
renowned disassembler) as a candidate that relies on recovering
relocatable assembly code and Rev.ng (a tool for binary analysis) for the
full-translation."

Nimk B oo g e

Fig. 2: Integration of Rev.ng and SRCIROR to generate mutant
binaries

Credit: Ahmadi, Kiaei & Emamdoost.

In contrast with previously developed mutation testing methods, the
framework created by the researchers produces a larger number of
mutants, as it has a diverse set of mutation operators. In their
experiments, Ahmadi and his colleagues realized that techniques like

3/5

https://techxplore.com/tags/mutations/

Tech?$plore

Rev.ng, which recompile the translated binary code into an intermediate
representation, are not suitable for conducting mutation analyses.

"The size of the binaries rewritten by Rev.ng increased up to 70x
compared to the baseline," Ahmadi explained. "The reason for this is the
inclusion of QEMU's callbacks, used for chaining the translated blocks
into resulting binaries. We found that the mutation score was directly
related with the number of killed mutants and generally observed a
higher mutation score from Ddisasm results compared to Rev.ng and
previous works."

So far, the framework for binary mutation testing created by this team of
researchers has achieved highly promising results. In the future, it could
allow developers and researchers worldwide to evaluate test suites for
software programs based on binary codes.

"In our recent paper, we addressed the limitations of binary mutation by
employing more robust binary rewriting approaches and adopting a
comprehensive set of mutation operations,” Ahmadi said. "This work
could be extended for proof-testing the patches when there is no access
to the source code. One way to approach it is to map the mutation
operators to the possible vulnerabilities in a binary. For example, an
incorrect replacement of code during a software patch might cause a
double-fetch vulnerability due to ambiguity introduced at memory
read/write patterns."

More information: SN4KE: Practical mutation testing at binary level.
arXiv:2102.05709 [cs.SE]. arxiv.org/abs/2102.05709

Github repository project: github.com/pwnslinger/sndke/

www.ndss-symposium.org/ndss-program/bar-2021/

4/5

https://techxplore.com/tags/binary+code/
https://techxplore.com/tags/code/
https://arxiv.org/abs/2102.05709
https://github.com/pwnslinger/sn4ke/
https://www.ndss-symposium.org/ndss-program/bar-2021/

. & ’
‘ech?splore

© 2021 Science X Network

Citation: SN4KE: A lightweight and scalable framework for binary mutation testing (2021,
March 8) retrieved 20 March 2024 from https://techxplore.com/news/2021-03-sn4ke-lightweight-

scalable-framework-binary.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

5/5

https://techxplore.com/news/2021-03-sn4ke-lightweight-scalable-framework-binary.html
https://techxplore.com/news/2021-03-sn4ke-lightweight-scalable-framework-binary.html
http://www.tcpdf.org

