

Neuro-evolutionary robotics: A gap between
simulation and reality

July 16 2021

The robot and its reference model. a The e-puck robot in the configuration used
for the experiments presented in the paper. Details are provided in “Methods”. b
The reference model RM 1.1, which formally describes the programming
interface through which, in the experiments presented in the paper, the control
software interacts with the underlying hardware. The range-and-bearing vector
points to the aggregate position of the neighboring peers perceived; its
magnitude increases with the number of neighboring peers perceived and
decreases with their distance. Formally,
V=∑nm=1(11+rm,∠bm)V=∑m=1n(11+rm,∠bm), where rm and ∠bm are range
and bearing of neighbor m, respectively. If no neighboring peer is perceived, the
vector points in front of the robot and has unitary magnitude; formally, V = (1,
∠0). Credit: DOI: 10.1038/s41467-021-24642-3

Neuro-evolutionary robotics is an attractive approach to realize
collective behaviors for swarms of robots. Despite the large number of

1/4

studies that have been devoted to it and although many methods and
ideas have been proposed, empirical evaluations and comparative
analyses are rare.

A publication in the journal Nature Communications, led by Mauro
Birattari and his team at the research center IRIDIA, École
Polytechnique de Bruxelles, Université Libre de Bruxelles, compares
some of the most popular and advanced neuro-evolutionary methods for
offline design of robot swarms.

"Concretely, these methods can enable the development of humanoid
robot behavior, but to my knowledge, neuro-evolutionary robotics is not
yet routinely adopted in real-world applications," explains Mauro
Birattari.

All of these processes use evolutionary algorithms to generate a neural
network that controls the robots, i.e., a neural network that takes sensor
readings as input and outputs actuator commands. These methods use
computer simulations to generate a neural network appropriate for the
specific mission that the robots must accomplish. Once the neural
network is generated (in simulation), it is installed on the physical robots
and tested.

When comparing the different methods, the researchers observed a kind
of "overfitting": the design process becomes too specialized in the
simulation environment, and the neural network produced fails to
"generalize" to the real world. This is a reality gap, i.e. the difference
between reality and the simulator used in the design process. Although
the simulator is fairly accurate, differences are inevitable.

"For example, if robots need to move back and forth between two areas,
one solution that the evolutionary process might find in simulation is to
produce a neural network that makes the robot move along a circular

2/4

https://techxplore.com/tags/network/
https://techxplore.com/tags/computer+simulations/
https://techxplore.com/tags/simulation/
https://techxplore.com/tags/design+process/

path that touches both areas. This solution is very elegant and works very
efficiently in simulation. When applied to robots, this solution would fail
miserably: for example, if the real diameter of (one of) the robot's
wheels differs slightly from the nominal value, the radius of the
trajectory will be different... the trajectory will no longer pass through
the two given zones as desired and as predicted by the simulation,"
illustrates Mauro Birattari.

Although counter-intuitive, the solution seems to be to reduce the
"power" of the design method: adopt a method that can produce a
limited range of behaviors. This clearly means that researchers will have
to accept that they will get worse results in simulation. This method will
not perform as well in simulation as a "powerful" method because it will
not be able to exploit all the characteristics of the simulator, yet the
result will be more general, less specialized to the simulator and
therefore more likely to generalize well to reality. The simpler the better.

The chocolate method seems a good illustration of this idea. Chocolate is
a process that researchers at the IRIDIA Center proposed a few years
ago and that does not belong to neuro-evolutionary robotics but that, in a
similar way to neuro-evolution, automatically generates control software
for robots, under the same conditions. Chocolat operates on pre-existing
software modules that are low-level behaviors (e.g., I go in the direction
of the light, I stop, I move away from perceived peers...) and conditions
for moving from one low-level behavior to another (e.g., I am
surrounded by peers, the color of the floor I am on is black...).

Instead of playing with a very powerful neural network capable of
producing a wide range of behaviors, chocolate plays with predefined
building blocks that are (comparatively) much more "coarse." The
working hypothesis is that by doing so, the risks of "over-fitting" will be
reduced.

3/4

https://techxplore.com/tags/robot/
https://techxplore.com/tags/behavior/
https://techxplore.com/tags/neural+network/

 More information: Ken Hasselmann et al, Empirical assessment and
comparison of neuro-evolutionary methods for the automatic off-line
design of robot swarms, Nature Communications (2021). DOI:
10.1038/s41467-021-24642-3

Provided by Université libre de Bruxelles

Citation: Neuro-evolutionary robotics: A gap between simulation and reality (2021, July 16)
retrieved 10 April 2024 from
https://techxplore.com/news/2021-07-neuro-evolutionary-robotics-gap-simulation-reality.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://dx.doi.org/10.1038/s41467-021-24642-3
http://dx.doi.org/10.1038/s41467-021-24642-3
https://techxplore.com/news/2021-07-neuro-evolutionary-robotics-gap-simulation-reality.html
http://www.tcpdf.org

