
 

A framework to enhance deep learning using
first-spike times
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Photograph of the BrainScaleS-2 chip used for the emulation. This mixed-signal
neuromorphic research chip is used for various projects in Heidelberg and
thanks to its analog accelerator the platform is characterized by speed and energy-
efficiency. Credit: kip.uni-heidelberg.de/vision/

Researchers at Heidelberg University and University of Bern have
recently devised a technique to achieve fast and energy-efficient
computing using spiking neuromorphic substrates. This strategy,
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introduced in a paper published in Nature Machine Intelligence, is a
rigorous adaptation of a time-to-first-spike (TTFS) coding scheme,
together with a corresponding learning rule implemented on certain
networks of artificial neurons. TTFS is a time-coding approach, in which
the activity of neurons is inversely proportional to their firing delay.

"A few years ago, I started my Master's thesis in the Electronic Vision(s)
group in Heidelberg," Julian Goeltz, one of the leading researchers
working on the study, told TechXplore. "The neuromorphic BrainScaleS
system developed there promised to be an intriguing substrate for brain-
like computation, given how its neuron and synapse circuits mimic the
dynamics of neurons and synapses in the brain."

When Goeltz started studying in Heidelberg, deep-learning models for
spiking networks were still relatively unexplored and existing approaches
did not use spike-based communication between neurons very
effectively. In 2017, Hesham Mostafa, a researcher at University of
California—San Diego, introduced the idea that the timing of individual
neuronal spikes could be used for information processing. However, the
neuronal dynamics he outlined in his paper were still quite different
from biological ones and thus were not applicable to brain-inspired
neuromorphic hardware.

"We therefore needed to come up with a hardware-compatible variant of
error backpropagation, the algorithm underlying the modern AI
revolution, for single spike times," Goeltz explained. "The difficulty lay
in the rather complicated relationship between synaptic inputs and
outputs of spiking neurons."

Initially, Goeltz and his colleagues set out to develop a mathematical
framework that could be used to approach the problem of achieving
deep learning based on temporal coding in spiking neural networks.
Their goal was to then transfer this approach and the results they
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gathered onto the BrainScaleS system, a renowned neuromorphic
computing system that emulates models of neurons, synapses, and brain
plasticity.

"Assume that we have a layered network in which the input layer
receives an image, and after several layers of processing the topmost
layer needs to recognize the image as being a cat or a dog," Laura
Kriener, the second lead researcher for the study, told TechXplore. "If
the image was a cat, but the 'dog' neuron in the top layer became active,
the network needs to learn that its answer was wrong. In other words, the
network needs to change connections—i.e., synapses—between the
neurons in such a way that the next time it sees the same picture, the
'dog' neuron stays silent and the 'cat' neuron is active."

The problem described by Kriener and addressed in the recent paper,
known as the 'credit assignment problem," essentially entails
understanding which synapses in a neural network are responsible for a
network's output or prediction, and how much of the credit each synapse
should take for a given prediction.

To identify what synapses were involved in a network's wrong prediction
and fix the issue, researchers often use the so-called error
backpropagation algorithm. This algorithm works by propagating an
error in the topmost layer of a neural network back through the network,
to inform synapses about their own contribution to this error and change
each of them accordingly.

When neurons in a network communicate via spikes, each input spike
'bumps' the potential of a neuron up or down. The size of this 'bump'
depends on the weight of a given synapse, known as 'synaptic weight."

"If enough upward bumps accumulate, the neuron 'fires'—it sends out a
spike of its own to its partners," Kriener said. "Our framework
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effectively tells a synapse exactly how to change its weight to achieve a
particular output spike time, given the timing errors of the neurons in the
layers above, similarly to the backpropagation algorithm, but for spiking
neurons. This way, the entire spiking activity of a network can be shaped
in the desired way—which, in the example above, would cause the 'cat'
neuron to fire early and the 'dog' neuron to stay silent or fire later."

Due to its spike-based nature and to the hardware used to implement it,
the framework developed by Goeltz, Kriener and their colleagues
exhibits remarkable speed and efficiency. Moreover, the framework
encourages neurons to spike as quickly as possible and only once.
Therefore, the flow of information is both quick and sparse, as very little
data needs to flow through a given neural network to enable it to
complete a task.

"The BrainScaleS hardware further amplifies these features, as its
neuron dynamics are extremely fast—1000 times faster than those in the
brain—which translates to a correspondingly higher information
processing speed," Kriener explained. "Furthermore, the silicon neurons
and synapses are designed to consume very little power during their
operation, which brings about the energy efficiency of our neuromorphic
networks."

  
 

4/8



 

  

Illustration of the on-chip classification process. The traces in the eight panels
show the membrane voltages of the classifying neurons. The sharp peak is when
the neuron spikes. Our algorithm aims to have the ‘correct’ label neuron spike
first while delaying the spikes of the other label neurons. Multiple recordings for
each trace show the variation due to the analog nature of the circuitry, but
nevertheless the algorithm succeeds in training. Credit: Goltz et al.

The findings could have important implications for both research and
development. In addition to informing further studies, they could, in
fact, pave the way toward the development of faster and more efficient
neuromorphic computing tools.

"With respect to information processing in the brain, one longstanding
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question is: Why do neurons in our brains communicate with spikes? Or
in other words, why has evolution favored this form of communication?"
M. A. Petrovici, the senior researcher for the study, told TechXplore. "In
principle, this might simply be a contingency of cellular biochemistry,
but we suggest that a sparse and fast spike-based information processing
scheme such as ours provides an argument for the functional superiority
of spikes."

The researchers also evaluated their framework in a series of systematic
robustness tests. Remarkably, they found that their model is well-suited
for imperfect and diverse neural substrates, which would resemble those
in the human cortex, where no two neurons are identical, as well as
hardware with variations in its components.

"Our demonstrated combination of high speed and low power comes, we
believe, at an opportune time, considering recent developments in chip
design," Petrovici explained. "While on modern processors the number
of transistors still increases roughly exponentially (Moore's law), the raw
processing speed as measured by the clock frequency has stagnated in
the mid-2000s, mainly due to the high power dissipation and the high
operating temperatures that ariseas a consequence. Furthermore, modern
processors still essentially rely on a von-Neumann architecture, with a 
central processing unit and a separate memory, between which
information needs to flow for each processing step in an algorithm."

In neural networks, memories or data are stored within the processing
units themselves; that is, within neurons and synapses. This can
significantly increase the efficiency of a system's information flow.

As a consequence of this greater efficiency in information storage and
processing, the framework developed by this team of researchers
consumes comparatively little power. Therefore, it could prove
particularly valuable for edge computing applications such as
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nanosatellites or wearable devices, where the available power budget is
not sufficient to support the operations and requirements of modern
microprocessors.

So far, Goeltz, Kriener, Petrovici and their colleagues ran their
framework using a platform for basic neuromorphic research, which
thus prioritizes model flexibility over efficiency. In the future, they
would like to implement their framework on custom-designed
neuromorphic chips, as this could allow them to further improve its
performance.

"Apart from the possibility of building specialized hardware using our
design strategy, we plan to pursue two further research questions,"
Goeltz said. "First, we would like to extend our neuromorphic
implementation to online and embedded learning."

For the purpose of this recent study, the network developed by the
researchers was trained offline, on a pre-recorded dataset. However, the
team would like to also test it in real-world scenarios where a computer
is expected to learn how to complete a task on the fly by analyzing online
data collected by a device, robot or satellite.

"To achieve this, we aim to harness the plasticity mechanisms embedded
on-chip," Goeltz explained. "Instead of having a host computer calculate
the synaptic changes during learning, we want to enable each synapse to
compute and enact these changes on its own, using only locally available
information. In our paper, we describe some early ideas towards
achieving this goal."

In their future work, Goeltz, Kriener, Petrovici and their colleagues
would also like to extend their framework so that it can process
spatiotemporal data. To do this, they would need to also train it on time-
varying data, such as audio or video recordings.
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"While our model is, in principle, suited to shape the spiking activity in a
network in arbitrary ways, the specific implementation of spike-based
error propagation during temporal sequence learning remains an open
research question," Kriener added.
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