
 

Machine learning explores materials science
questions and solves difficult search
problems

May 24 2022, by Elizabeth Ball

  
 

  

Schematic of the continuous action MCTS algorithm applied for exploration of
high-dimensional potential parameter surfaces. a Top: Simplistic representation
of an objective landscape for a two-parameter search problem. In-plane axes
correspond to (two) independent model parameters. The out-of-plane axis
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corresponds to objective values, which is defined as the weighted sum of the
error in model predicted energies of clusters with respect to target energies. This
objective is minimized by our c-MCTS algorithm. The spheres represent
candidates of different model parameters within an MCTS run, where
differences in their vertical positions indicate differences in their objective
values. Bottom: Slightly tilted view of the above with the surface represented as a
contour map below the spheres. The numbering on the spheres corresponds to
their node positions in the MCTS tree shown in b. These numbers roughly
correspond to the order that the candidates are explored. b Schematic showing
the root, parent, child nodes, and their relationship within an MCTS tree
structure. A typical MCTS search involves node selection, expansion, simulation
(playout), and back-propagation. Different coloring of the nodes indicates
different depths in the MCTS tree. The algorithm balances between exploration
(lateral expansion of nodes) and exploitation (depth expansion of nodes). As
shown in a, the objective value of an MCTS run is expected to decrease quickly
along with the depth of the tree. c Search space of a traditional MCTS algorithm,
e.g., game board, is discrete. In the context of parameter optimization, for two
discrete parameters each of 19 possible values, the search space consists of a
finite 361 search positions. d The problem of parameter search, such as the
objective surface illustrated in a, generally involves parameters that are
continuous, which corresponds to infinite possible search positions. We handle
this challenge by applying a range-funneling technique to the MCTS algorithm
where the search neighborhood at each tree-depth becomes smaller and smaller
such that the algorithm can converge to the optimal solutions. Credit: Nature
Communications (2022). DOI: 10.1038/s41467-021-27849-6

Using computing resources at the National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley National Laboratory
(Berkeley Lab), researchers at Argonne National Laboratory have
succeeded in exploring important materials science questions and
demonstrated progress using machine learning to solve difficult search
problems.
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By adapting a machine-learning algorithm from board games such as
AlphaGo, the researchers developed force fields for nanoclusters of 54
elements across the periodic table, a dramatic leap toward understanding
their unique properties and proof of concept for their search method.
The team published its results in Nature Communications in January.

Depending on their scale—bulk systems of 100+ nanometers versus
nanoclusters of less than 100 nanometers—materials can display
dramatically different properties, including optical and magnetic
properties, discrete energy levels, and enhanced photoluminescence.
These properties may lend themselves to new scientific and industry
applications, and scientists can learn about them by developing force
fields—computational models that estimate the potential energies
between atoms in a molecule and between molecules—for each element
or compound. But materials scientists can spend years using traditional
physics-based methods to explore the structures and forces between
atoms in nanoclusters of a single element.

"We wanted to look at the nanoscale dynamics, and for that, usually we'd
use some quantum calculus and density functional theory, but those are
computationally very expensive calculations," said materials scientist
Sukriti Manna, primary author on the paper, of the painstaking work of
searching for and finding the parameters of potential models.

Applying machine learning is one potential way to cut that cost.
However, the available algorithms come from discrete search spaces like
games, where the number of search branches and possible outcomes is
finite. In a continuous action space like force fields for chemical
element nanoclusters, the number of possible search branches is infinite,
and brute force—the ability to run every scenario to find the best
outcome—simply doesn't work.

Working smarter, not harder
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To make an existing algorithm work smarter, not harder, machine
learning specialist Troy Loeffler used a type of reinforcement learning
called Monte Carlo tree search (MCTS). Reinforcement learning is a
form of machine learning that allows an algorithm to interact directly
with its environment, learning through punishment and reward, with the
goal of gaining the most cumulative reward over time. MCTS uses an
"explore and exploit" method—initially searching randomly, then
learning to ignore less productive search paths, or playouts, and focus on
more productive ones. Loeffler also introduced a few new functions to
make the algorithm more efficient: a uniqueness function to eliminate
redundant searches, a window scaling scheme to correlate the tree depth
to the action space to provide a useful bit of structure, and playout
expansion, which teaches the algorithm to prioritize random searches
that were closer to something that had already proven productive.

"A lot of the work we did was actually developing the algorithm for
continuous action spaces, where you don't have nice, discrete board
game spaces; you have parameters that can move anywhere on the
particular landscape," said Loeffler. "The core idea is that you're using a
combination of both complete randomness and a bit of a deterministic
element, with the AI, to figure it out."
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Two representations show the algorithm's effectiveness at predicting force fields
for 54 elements across the periodic table. Credit: NERSC

The combination worked, yielding force fields for 54 elements in a
fraction of the time it once would have taken to find parameters for just
one element and proving that reinforcement learning can be a useful tool
in continuous action spaces.

The team used the Cori supercomputer at NERSC to perform their
calculations and generate both training and fittingdatasets, primarily
using Vienna Ab initio Simulation Package (VASP) software for atomic-
scale materials modeling and the classical molecular-dynamics code
LAMMPS. This project is just one of many at NERSC from the Theory
and Modeling team at Argonne, who frequently take advantage of
NERSC's computational power, minimal queues, and reliable
maintenance.

"For elements such as carbon, boron, and phosphorous, we require a lot
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of datasets and we require good quality, and for this particular work I
use NERSC for generating tons of huge datasets because of their
structural diversity. Cori is a very fast computer, and when I was using it,
the queue time was very short, so we got that work done very quickly,"
said Manna. In addition, he said, "if we have 100% workload, for
computational time, we depend on NERSC for 90% of that workload."

Machine learning specialist Rohit Batra, who developed a machine
learning framework to analyze the error trends in potential functions
across the periodic table, concurred. "I'm a big fan of Cori—I use it for
several purposes," he said. "It's very well-maintained. Sometimes, in
other clusters, there can be issues that cause them to be offline for quite
a while, but I think NERSC is very well-maintained and very reliable in
that way."

The future of MCTS goes deep and wide

Now that the use of MCTS in continuous search space has been
demonstrated, what comes next? From a materials science perspective,
there's more work to do exploring more complex materials.

"From an application perspective, a force field development perspective,
we've explored elemental stuff and a few binary alloys, so in the near
future we'll look into combinations, like oxides and sulfites, and develop
those force fields," said Manna. "Because of the powerful algorithm, all
we need is time and other training data sets."

But materials science isn't the only application of MCTS broken open by
this work—and part of the next stage involves testing the breadth and
boundaries of the algorithm's utility.

"We're taking MCTS and applying it to a lot of different situations," said
Loeffler. "We have 10 or 11 different projects that we or our
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collaborators are interested in using the algorithm for," including further
games-oriented research and additional force-field fitting. Thus far, it's a
process that has met with success, and its future looks bright, he added.
"We're looking for a lot of things to try it on. But so far, everything
we've tried it on, it's worked incredibly well."

  More information: Sukriti Manna et al, Learning in continuous action
space for developing high dimensional potential energy models, Nature
Communications (2022). DOI: 10.1038/s41467-021-27849-6
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