

Technique significantly boosts the speeds of
programs that run in the Unix shell

June 7 2022, by Adam Zewe

Researchers have created a technique that boosts the speeds of programs that run
in the Unix shell, a ubiquitous programming environment created 50 years ago,
by parallelizing the programs. Credit: Christine Daniloff, MIT

Researchers have pioneered a technique that can dramatically accelerate

1/7

certain types of computer programs automatically, while ensuring
program results remain accurate.

Their system boosts the speeds of programs that run in the Unix shell, a
ubiquitous programming environment created 50 years ago that is still
widely used today. Their method parallelizes these programs, which
means that it splits program components into pieces that can be run
simultaneously on multiple computer processors.

This enables programs to execute tasks like web indexing, natural
language processing, or analyzing data in a fraction of their original
runtime.

"There are so many people who use these types of programs, like data
scientists, biologists, engineers, and economists. Now they can
automatically accelerate their programs without fear that they will get
incorrect results," says Nikos Vasilakis, research scientist in the
Computer Science and Artificial Intelligence Laboratory (CSAIL) at
MIT.

The system also makes it easy for the programmers who develop tools
that data scientists, biologists, engineers, and others use. They don't need
to make any special adjustments to their program commands to enable
this automatic, error-free parallelization, adds Vasilakis, who chairs a
committee of researchers from around the world who have been working
on this system for nearly two years.

Vasilakis is senior author of the group's latest research paper, which
includes MIT co-author and CSAIL graduate student Tammam Mustafa
and will be presented at the USENIX Symposium on Operating Systems
Design and Implementation. Co-authors include lead author
Konstantinos Kallas, a graduate student at the University of
Pennsylvania; Jan Bielak, a student at Warsaw Staszic High School;

2/7

https://techxplore.com/tags/natural+language+processing/
https://techxplore.com/tags/natural+language+processing/

Dimitris Karnikis, a software engineer at Aarno Labs; Thurston H.Y.
Dang, a former MIT postdoc who is now a software engineer at Google;
and Michael Greenberg, assistant professor of computer science at the
Stevens Institute of Technology.

A decades-old problem

This new system, known as PaSh, focuses on program, or scripts, that
run in the Unix shell. A script is a sequence of commands that instructs a
computer to perform a calculation. Correct and automatic parallelization
of shell scripts is a thorny problem that researchers have grappled with
for decades.

The Unix shell remains popular, in part, because it is the only
programming environment that enables one script to be composed of
functions written in multiple programming languages. Different
programming languages are better suited for specific tasks or types of
data; if a developer uses the right language, solving a problem can be
much easier.

"People also enjoy developing in different programming languages, so
composing all these components into a single program is something that
happens very frequently," Vasilakis adds.

While the Unix shell enables multilanguage scripts, its flexible and
dynamic structure makes these scripts difficult to parallelize using
traditional methods.

Parallelizing a program is usually tricky because some parts of the
program are dependent on others. This determines the order in which
components must run; get the order wrong and the program fails.

When a program is written in a single language, developers have explicit

3/7

https://techxplore.com/tags/software+engineer/
https://techxplore.com/tags/programming+languages/

information about its features and the language that helps them
determine which components can be parallelized. But those tools don't
exist for scripts in the Unix shell. Users can't easily see what is
happening inside the components or extract information that would aid
in parallelization.

A just-in-time solution

To overcome this problem, PaSh uses a preprocessing step that inserts
simple annotations onto program components that it thinks could be
parallelizable. Then PaSh attempts to parallelize those parts of the script
while the program is running, at the exact moment it reaches each
component.

This avoids another problem in shell programming—it is impossible to
predict the behavior of a program ahead of time.

By parallelizing program components "just in time," the system avoids
this issue. It is able to effectively speed up many more components than
traditional methods that try to perform parallelization in advance.

Just-in-time parallelization also ensures the accelerated program still
returns accurate results. If PaSh arrives at a program component that
cannot be parallelized (perhaps it is dependent on a component that has
not run yet), it simply runs the original version and avoids causing an
error.

"No matter the performance benefits—if you promise to make
something run in a second instead of a year—if there is any chance of
returning incorrect results, no one is going to use your method,"
Vasilakis says.

Users don't need to make any modifications to use PaSh; they can just

4/7

add the tool to their existing Unix shell and tell their scripts to use it.

Acceleration and accuracy

The researchers tested PaSh on hundreds of scripts, from classical to
modern programs, and it did not break a single one. The system was able
to run programs six times faster, on average, when compared to
unparallelized scripts, and it achieved a maximum speedup of nearly 34
times.

It also boosted the speeds of scripts that other approaches were not able
to parallelize.

"Our system is the first that shows this type of fully correct
transformation, but there is an indirect benefit, too. The way our system
is designed allows other researchers and users in industry to build on top
of this work," Vasilakis says.

He is excited to get additional feedback from users and see how they
enhance the system. The open-source project joined the Linux
Foundation last year, making it widely available for users in industry and
academia.

Moving forward, Vasilakis wants to use PaSh to tackle the problem of
distribution—dividing a program to run on many computers, rather than
many processors within one computer. He is also looking to improve the
annotation scheme so it is more user-friendly and can better describe
complex program components.

"Unix shell scripts play a key role in data analytics and software
engineering tasks. These scripts could run faster by making the diverse
programs they invoke utilize the multiple processing units available in
modern CPUs. However, the shell's dynamic nature makes it difficult to

5/7

devise parallel execution plans ahead of time," says Diomidis Spinellis, a
professor of software engineering at Athens University of Economics
and Business and professor of software analytics at Delft Technical
University, who was not involved with this research. "Through just-in-
time analysis, PaSh-JIT succeeds in conquering the shell's dynamic
complexity and thus reduces script execution times while maintaining
the correctness of the corresponding results."

"As a drop-in replacement for an ordinary shell that orchestrates steps,
but does not reorder or split them, PaSh provides a no-hassle way to
improve the performance of big data-processing jobs," adds Douglas
McIlroy, adjunct professor in the Department of Computer Science at
Dartmouth College, who previously led the Computing Techniques
Research Department at Bell Laboratories (which was the birthplace of
the Unix operating system). "Hand optimization to exploit parallelism
must be done at a level for which ordinary programming languages
(including shells) don't offer clean abstractions. The resulting code
intermixes matters of logic and efficiency. It's hard to read and hard to
maintain in the face of evolving requirements. PaSh cleverly steps in at
this level, preserving the original logic on the surface while achieving
efficiency when the program is run."

 More information: Practically Correct, Just-in-Time Shell Script
Parallelization: nikos.vasilak.is/p/pash:osdi:2022.pdf

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Technique significantly boosts the speeds of programs that run in the Unix shell (2022,

6/7

https://nikos.vasilak.is/p/pash:osdi:2022.pdf
http://web.mit.edu/newsoffice/

June 7) retrieved 20 March 2024 from https://techxplore.com/news/2022-06-technique-
significantly-boosts-unix-shell.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

7/7

https://techxplore.com/news/2022-06-technique-significantly-boosts-unix-shell.html
https://techxplore.com/news/2022-06-technique-significantly-boosts-unix-shell.html
http://www.tcpdf.org

