

A new programming language for hardware
accelerators

July 11 2022, by Rachel Gordon

Researchers created Exo, which helps performance engineers transform simple
programs that specify what they want to compute into very complex programs
that do the same thing as the specification, only much, much faster. Credit:
Pixabay/CC0 Public Domain

Moore's Law needs a hug. The days of stuffing transistors on little

1/5

silicon computer chips are numbered, and their life rafts—hardware
accelerators—come with a price.

When programming an accelerator—a process where applications
offload certain tasks to system hardware especially to accelerate that
task—you have to build a whole new software support. Hardware
accelerators can run certain tasks orders of magnitude faster than CPUs,
but they cannot be used out of the box. Software needs to efficiently use
accelerators' instructions to make it compatible with the entire
application system. This translates to a lot of engineering work that then
would have to be maintained for a new chip that you're compiling code
to, with any programming language.

Now, scientists from MIT's Computer Science and Artificial Intelligence
Laboratory (CSAIL) created a new programming language called "Exo"
for writing high-performance code on hardware accelerators. Exo helps
low-level performance engineers transform very simple programs that
specify what they want to compute, into very complex programs that do
the same thing as the specification, but much, much faster by using these
special accelerator chips. Engineers, for example, can use Exo to turn a
simple matrix multiplication into a more complex program, which runs
orders of magnitude faster by using these special accelerators.

Unlike other programming languages and compilers, Exo is built around
a concept called "Exocompilation." "Traditionally, a lot of research has
focused on automating the optimization process for the specific
hardware," says Yuka Ikarashi, a Ph.D. student in electrical engineering
and computer science and CSAIL affiliate who is a lead author on a new
paper about Exo. "This is great for most programmers, but for
performance engineers, the compiler gets in the way as often as it helps.
Because the compiler's optimizations are automatic, there's no good way
to fix it when it does the wrong thing and gives you 45 percent
efficiency instead of 90 percent."

2/5

https://techxplore.com/tags/hardware/
https://techxplore.com/tags/programming+language/
https://techxplore.com/tags/electrical+engineering/

With Exocompilation, the performance engineer is back in the driver's
seat. Responsibility for choosing which optimizations to apply, when,
and in what order is externalized from the compiler, back to the
performance engineer. This way, they don't have to waste time fighting
the compiler on the one hand, or doing everything manually on the other.
At the same time, Exo takes responsibility for ensuring that all of these
optimizations are correct. As a result, the performance engineer can
spend their time improving performance, rather than debugging the
complex, optimized code.

"Exo language is a compiler that's parameterized over the hardware it
targets; the same compiler can adapt to many different hardware
accelerators," says Adrian Sampson, assistant professor in the
Department of Computer Science at Cornell University. "Instead of
writing a bunch of messy C++ code to compile for a new accelerator,
Exo gives you an abstract, uniform way to write down the 'shape' of the
hardware you want to target. Then you can reuse the existing Exo
compiler to adapt to that new description instead of writing something
entirely new from scratch. The potential impact of work like this is
enormous: If hardware innovators can stop worrying about the cost of
developing new compilers for every new hardware idea, they can try out
and ship more ideas. The industry could break its dependence on legacy
hardware that succeeds only because of ecosystem lock-in and despite its
inefficiency."

The highest-performance computer chips made today, such as Google's
TPU, Apple's Neural Engine, or NVIDIA's Tensor Cores, power
scientific computing and machine learning applications by accelerating
something called "key sub-programs," kernels, or high-performance
computing (HPC) subroutines.

Clunky jargon aside, the programs are essential. For example, something
called Basic Linear Algebra Subroutines (BLAS) is a "library" or

3/5

https://techxplore.com/tags/engineer/
https://techxplore.com/tags/scientific+computing/

collection of such subroutines, which are dedicated to linear algebra
computations, and enable many machine learning tasks like neural
networks, weather forecasts, cloud computation, and drug discovery.
(BLAS is so important that it won Jack Dongarra the Turing Award in
2021.) However, these new chips—which take hundreds of engineers to
design—are only as good as these HPC software libraries allow.

Currently, though, this kind of performance optimization is still done by
hand to ensure that every last cycle of computation on these chips gets
used. HPC subroutines regularly run at 90 percent-plus of peak
theoretical efficiency, and hardware engineers go to great lengths to add
an extra five or 10 percent of speed to these theoretical peaks. So, if the
software isn't aggressively optimized, all of that hard work gets
wasted—which is exactly what Exo helps avoid.

Another key part of Exocompilation is that performance engineers can
describe the new chips they want to optimize for, without having to
modify the compiler. Traditionally, the definition of the hardware
interface is maintained by the compiler developers, but with most of
these new accelerator chips, the hardware interface is proprietary.
Companies have to maintain their own copy (fork) of a whole traditional
compiler, modified to support their particular chip. This requires hiring
teams of compiler developers in addition to the performance engineers.

"In Exo, we instead externalize the definition of hardware-specific
backends from the exocompiler. This gives us a better separation
between Exo—which is an open-source project—and hardware-specific
code—which is often proprietary. We've shown that we can use Exo to
quickly write code that's as performant as Intel's hand-optimized Math
Kernel Library. We're actively working with engineers and researchers at
several companies," says Gilbert Bernstein, a postdoc at the University
of California at Berkeley.

4/5

The future of Exo entails exploring a more productive scheduling meta-
language, and expanding its semantics to support parallel programming
models to apply it to even more accelerators, including GPUs.

Ikarashi and Bernstein wrote the paper alongside Alex Reinking and
Hasan Genc, both Ph.D. students at UC Berkeley, and MIT Assistant
Professor Jonathan Ragan-Kelley.

 More information: Yuka Ikarashi et al, Exocompilation for
productive programming of hardware accelerators, Proceedings of the
43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (2022). DOI:
10.1145/3519939.3523446

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: A new programming language for hardware accelerators (2022, July 11) retrieved 5
May 2024 from https://techxplore.com/news/2022-07-language-hardware.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://dx.doi.org/10.1145/3519939.3523446
https://dx.doi.org/10.1145/3519939.3523446
http://web.mit.edu/newsoffice/
https://techxplore.com/news/2022-07-language-hardware.html
http://www.tcpdf.org

