Light-powered catalyst makes hydrogen energy from pungent gas in one-step process

New catalyst can turn smelly hydrogen sulfide into cash cow
An illustration of the light-powered, one-step remediation process for hydrogen sulfide gas made possible by a gold photocatalyst created at Rice University. Credit: Halas Group/Rice University

Rice University engineers and scientists have created a sweet way for petrochemical refineries to turn a smelly byproduct into cash.

Hydrogen gas has the unmistakable aroma of rotten eggs. It often emanates from sewers, stockyards and landfills, but it is particularly problematic for refineries, petrochemical plants and other industries, which make thousands of tons of the noxious gas each year as a byproduct of processes that remove sulfur from petroleum, , coal and other products.

In a study published in ACS Energy Letters, Rice engineer, physicist and chemist Naomi Halas and collaborators describe a method that uses gold nanoparticles to convert into high-demand gas and sulfur in a single step. Better yet, the one-step process gets all its energy from light. Study co-authors include Rice's Peter Nordlander, Princeton University's Emily Carter and Syzygy Plasmonics' Hossein Robatjazi.

"Hydrogen sulfide emissions can result in hefty fines for industry, but remediation is also very expensive," said Halas, a nanophotonics pioneer whose lab has spent years developing commercially viable light-activated nanocatalysts. "The phrase 'game-changer' is overused, but in this case, it applies. Implementing plasmonic photocatalysis should be far less expensive than traditional remediation, and it has the added potential of transforming a costly burden into an increasingly valuable commodity."

Each molecule of (H2S) contains a pair of hydrogen atoms and one atom of sulfur. Each molecule of clean-burning hydrogen gas (H2)—the staple commodity of the hydrogen economy—contains a pair of hydrogen atoms. In the new study, Halas' team dotted the surface of grains of silicon dioxide powder with tiny islands of gold.

Each island was a gold nanoparticle about 10 billionths of a meter across that would interact strongly with a specific wavelength of visible light. These plasmonic reactions create "hot carriers," short-lived, high-energy electrons that can drive catalysis.

In the study, Halas and co-authors used a laboratory setup and showed a bank of LED lights could produce hot carrier photocatalysis and efficiently convert H2S directly into H2 gas and sulfur. That's a stark contrast to the established catalytic technology refineries use to break down hydrogen sulfide.

Known as the Claus process, it produces sulfur but no hydrogen, which it instead converts into water. The Claus process also requires multiple steps, including some that require combustion chambers heated to about 1,500 degrees Fahrenheit.

The plasmonic hydrogen sulfide remediation technology has been licensed by Syzygy Plasmonics, a Houston-based startup company with more than 60 employees, whose co-founders include Halas and Nordlander.

Halas said the remediation process could wind up having low enough implementation costs and high enough efficiency to become economical for cleaning up nonindustrial hydrogen sulfide from sources like sewer gas and animal wastes.

"Given that it requires only visible light and no external heating, the process should be relatively straightforward to scale up using renewable solar energy or highly efficient solid-state LED lighting," she said.

More information: Minghe Lou et al, Direct H2S Decomposition by Plasmonic Photocatalysis: Efficient Remediation plus Sustainable Hydrogen Production, ACS Energy Letters (2022). DOI: 10.1021/acsenergylett.2c01755

Journal information: ACS Energy Letters
Provided by Rice University
Citation: Light-powered catalyst makes hydrogen energy from pungent gas in one-step process (2022, October 31) retrieved 20 April 2024 from https://techxplore.com/news/2022-10-light-powered-catalyst-hydrogen-energy-pungent.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Low-temp photocatalyst could slash the carbon footprint for syngas

503 shares

Feedback to editors