

Sampling and pipelining method speeds up
deep learning on large graphs

November 30 2022, by Lauren Hinkel

Performance improvement of SALIENT over standard PyG workflow. Timing
measurements on one machine with one GPU. GNN: GraphSAGE with fanout
(15, 10, 5). Credit: arXiv (2021). DOI: 10.48550/arxiv.2110.08450

Graphs, a potentially extensive web of nodes connected by edges, can be
used to express and interrogate relationships between data, like social
connections, financial transactions, traffic, energy grids, and molecular
interactions. As researchers collect more data and build out these
graphical pictures, researchers will need faster and more efficient
methods, as well as more computational power, to conduct deep learning
on them, in the way of graph neural networks (GNN).

1/7

Now, a new method, called SALIENT (SAmpling, sLIcing, and data
movemeNT), developed by researchers at MIT and IBM Research,
improves the training and inference performance by addressing three
key bottlenecks in computation. This dramatically cuts down on the
runtime of GNNs on large datasets, which, for example, contain on the
scale of 100 million nodes and 1 billion edges. Further, the team found
that the technique scales well when computational power is added from
one to 16 graphical processing units (GPUs). The work was presented at
the Fifth Conference on Machine Learning and Systems.

"We started to look at the challenges current systems experienced when
scaling state-of-the-art machine learning techniques for graphs to really
big datasets. It turned out there was a lot of work to be done, because a
lot of the existing systems were achieving good performance primarily
on smaller datasets that fit into GPU memory," says Tim Kaler, the lead
author and a postdoc in the MIT Computer Science and Artificial
Intelligence Laboratory (CSAIL).

By vast datasets, experts mean scales like the entire Bitcoin network,
where certain patterns and data relationships could spell out trends or
foul play. "There are nearly a billion Bitcoin transactions on the
blockchain, and if we want to identify illicit activities inside such a joint
network, then we are facing a graph of such a scale," says co-author Jie
Chen, senior research scientist and manager of IBM Research and the
MIT-IBM Watson AI Lab. "We want to build a system that is able to
handle that kind of graph and allows processing to be as efficient as
possible, because every day we want to keep up with the pace of the new
data that are generated."

Kaler and Chen's co-authors include Nickolas Stathas MEng '21 of Jump
Trading, who developed SALIENT as part of his graduate work; former
MIT-IBM Watson AI Lab intern and MIT graduate student Anne
Ouyang; MIT CSAIL postdoc Alexandros-Stavros Iliopoulos; MIT

2/7

https://techxplore.com/tags/large+datasets/
https://techxplore.com/tags/machine+learning/
https://techxplore.com/tags/graphs/

CSAIL Research Scientist Tao B. Schardl; and Charles E. Leiserson, the
Edwin Sibley Webster Professor of Electrical Engineering at MIT and a
researcher with the MIT-IBM Watson AI Lab.

For this problem, the team took a systems-oriented approach in
developing their method: SALIENT, says Kaler. To do this, the
researchers implemented what they saw as important, basic
optimizations of components that fit into existing machine-learning
frameworks, such as PyTorch Geometric and the deep graph library
(DGL), which are interfaces for building a machine-learning model.

Stathas says the process is like swapping out engines to build a faster car.
Their method was designed to fit into existing GNN architectures, so
that domain experts could easily apply this work to their specified fields
to expedite model training and tease out insights during inference faster.
The trick, the team determined, was to keep all of the hardware (CPUs,
data links, and GPUs) busy at all times: while the CPU samples the
graph and prepares mini-batches of data that will then be transferred
through the data link, the more critical GPU is working to train the
machine-learning model or conduct inference.

The researchers began by analyzing the performance of a commonly
used machine-learning library for GNNs (PyTorch Geometric), which
showed a startlingly low utilization of available GPU resources.
Applying simple optimizations, the researchers improved GPU
utilization from 10 to 30%, resulting in a 1.4 to two times performance
improvement relative to public benchmark codes. This fast baseline code
could execute one complete pass over a large training dataset through the
algorithm (an epoch) in 50.4 seconds.

Seeking further performance improvements, the researchers set out to
examine the bottlenecks that occur at the beginning of the data pipeline:
the algorithms for graph sampling and mini-batch preparation. Unlike

3/7

other neural networks, GNNs perform a neighborhood aggregation
operation, which computes information about a node using information
present in other nearby nodes in the graph—for example, in a social
network graph, information from friends of friends of a user.

As the number of layers in the GNN increase, the number of nodes the
network has to reach out to for information can explode, exceeding the
limits of a computer. Neighborhood sampling algorithms help by
selecting a smaller random subset of nodes to gather; however, the
researchers found that current implementations of this were too slow to
keep up with the processing speed of modern GPUs.

In response, they identified a mix of data structures, algorithmic
optimizations, and so forth that improved sampling speed, ultimately
improving the sampling operation alone by about three times, taking the
per-epoch runtime from 50.4 to 34.6 seconds. They also found that
sampling, at an appropriate rate, can be done during inference,
improving overall energy efficiency and performance, a point that had
been overlooked in the literature, the team notes.

In previous systems, this sampling step was a multi-process approach,
creating extra data and unnecessary data movement between the
processes. The researchers made their SALIENT method more nimble
by creating a single process with lightweight threads that kept the data on
the CPU in shared memory. Further, SALIENT takes advantage of a
cache of modern processors, says Stathas, parallelizing feature slicing,
which extracts relevant information from nodes of interest and their
surrounding neighbors and edges, within the shared memory of the CPU
core cache. This again reduced the overall per-epoch runtime from 34.6
to 27.8 seconds.

The last bottleneck the researchers addressed was to pipeline mini-batch
data transfers between the CPU and GPU using a prefetching step,

4/7

https://techxplore.com/tags/neural+networks/

which would prepare data just before it's needed. The team calculated
that this would maximize bandwidth usage in the data link and bring the
method up to perfect utilization; however, they only saw around 90%.
They identified and fixed a performance bug in a popular PyTorch
library that caused unnecessary round-trip communications between the
CPU and GPU. With this bug fixed, the team achieved a 16.5 second per-
epoch runtime with SALIENT.

"Our work showed, I think, that the devil is in the details," says Kaler.
"When you pay close attention to the details that impact performance
when training a graph neural network, you can resolve a huge number of
performance issues. With our solutions, we ended up being completely
bottlenecked by GPU computation, which is the ideal goal of such a
system."

SALIENT's speed was evaluated on three standard datasets ogbn-arxiv,
ogbn-products, and ogbn-papers100M, as well as in multi-machine
settings, with different levels of fanout (amount of data that the CPU
would prepare for the GPU), and across several architectures, including
the most recent state-of-the-art one, GraphSAGE-RI. In each setting,
SALIENT outperformed PyTorch Geometric, most notably on the large
ogbn-papers100M dataset, containing 100 million nodes and over a
billion edges Here, it was three times faster, running on one GPU, than
the optimized baseline that was originally created for this work; with 16
GPUs, SALIENT was an additional eight times faster.

While other systems had slightly different hardware and experimental
setups, so it wasn't always a direct comparison, SALIENT still
outperformed them. Among systems that achieved similar accuracy,
representative performance numbers include 99 seconds using one GPU
and 32 CPUs, and 13 seconds using 1,536 CPUs. In contrast,
SALIENT's runtime using one GPU and 20 CPUs was 16.5 seconds and
was just two seconds with 16 GPUs and 320 CPUs.

5/7

"If you look at the bottom-line numbers that prior work reports, our 16
GPU runtime (two seconds) is an order of magnitude faster than other
numbers that have been reported previously on this dataset," says Kaler.

The researchers attributed their performance improvements, in part, to
their approach of optimizing their code for a single machine before
moving to the distributed setting. Stathas says that the lesson here is that
for your money, "it makes more sense to use the hardware you have
efficiently, and to its extreme, before you start scaling up to multiple
computers," which can provide significant savings on cost and carbon
emissions that can come with model training.

This new capacity will now allow researchers to tackle and dig deeper
into bigger and bigger graphs. For example, the Bitcoin network that was
mentioned earlier contained 100,000 nodes; the SALIENT system can
capably handle a graph 1,000 times (or three orders of magnitude)
larger.

"In the future, we would be looking at not just running this graph neural
network training system on the existing algorithms that we implemented
for classifying or predicting the properties of each node, but we also
want to do more in-depth tasks, such as identifying common patterns in a
graph (subgraph patterns), [which] may be actually interesting for
indicating financial crimes," says Chen.

"We also want to identify nodes in a graph that are similar in a sense that
they possibly would be corresponding to the same bad actor in a
financial crime. These tasks would require developing additional
algorithms, and possibly also neural network architectures."

 More information: Tim Kaler et al, Accelerating Training and
Inference of Graph Neural Networks with Fast Sampling and Pipelining,
arXiv (2021). DOI: 10.48550/arxiv.2110.08450

6/7

https://dx.doi.org/10.48550/arxiv.2110.08450

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Sampling and pipelining method speeds up deep learning on large graphs (2022,
November 30) retrieved 20 March 2024 from https://techxplore.com/news/2022-11-sampling-
pipelining-method-deep-large.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

7/7

http://web.mit.edu/newsoffice/
https://techxplore.com/news/2022-11-sampling-pipelining-method-deep-large.html
https://techxplore.com/news/2022-11-sampling-pipelining-method-deep-large.html
http://www.tcpdf.org

