
 

New AI-driven tool streamlines experiments
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Overview of machine learning pipeline, model Hamiltonian and reciprocal space
paths. a Ni4O4 square-lattice plaquette in La2NiO4. J (Jp) is the first (second)
nearest-neighbor interaction and a and b indicate the square-lattice unit vectors. 
b The Brillouin zone for the spin-1 square-lattice magnetic structure. Selected
high-symmetry points are indicated. The two momentum paths are denoted by
the purple and orange lines, respectively. c Visualization of the SIREN neural
network for predicting the scalar dynamical structure factor intensity. All nodes
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in adjacent layers are connected to each other in a fully-connected architecture.
The notation 64 × 3 and 64 × 1, represent three and one neural network layers
with 64 neurons and with sinusoidal and linear activation functions, respectively.
Neural network bias vectors are omitted for clarity. d Visualization of the
distribution of training, test, and validation data in J-Jp space. e Synthetic S(Q,
ω) predictions from the SIREN model along the corresponding trajectory shown
in d. Grid lines correspond to [0, 50, 100, 150, 200] meV and [P, M, X, P, Γ, X]
for the energy and wave vector, respectively.

Researchers at the Department of Energy's SLAC National Accelerator
Laboratory have demonstrated a new approach to peer deeper into the
complex behavior of materials. The team harnessed the power of
machine learning to interpret coherent excitations, collective swinging of
atomic spins within a system.

This groundbreaking research, published recently in Nature
Communications, could make experiments more efficient, providing real-
time guidance to researchers during data collection, and is part of a
project led by Howard University including researchers at SLAC and
Northeastern University to use machine learning to accelerate research in
materials.

The team created this new data-driven tool using "neural implicit
representations," a machine learning development used in computer
vision and across different scientific fields such as medical imaging,
particle physics and cryo-electron microscopy. This tool can swiftly and
accurately derive unknown parameters from experimental data,
automating a procedure that, until now, required significant human
intervention.

Peculiar behaviors
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Collective excitations help scientists understand the rules of systems,
such as magnetic materials, with many parts. When seen at the smallest
scales, certain materials show peculiar behaviors, like tiny changes in the
patterns of atomic spins. These properties are key for many new
technologies, such as advanced spintronics devices that could change
how we transfer and store data.

To study collective excitations, scientists use techniques such as inelastic
neutron or X-ray scattering. However, these methods are not only
intricate, but also resource-intensive given, for example, the limited
availability of neutron sources.

Machine learning offers a way to address these challenges, although even
then there are limitations. Past experiments used machine learning
techniques to enhance the accuracy of X-ray and neutron scattering data
interpretation. These efforts relied on traditional image-based data
representations. But the team's new approach, using neural implicit
representations, takes a different route.

Neural implicit representations use coordinates, like points on a map, as
inputs. In image processing, these networks can predict the color of a
particular pixel based on its position. The method doesn't directly store
the image but creates a recipe for how to interpret it by connecting the
pixel coordinate to its color. This allows it to make detailed predictions,
even between pixels. Such models have proven effective in capturing
intricate details in images and scenes, making them promising for
analyzing quantum materials data.

"Our motivation was to understand the underlying physics of the sample
we were studying. While neutron scattering can provide invaluable
insights, it requires sifting through massive data sets, of which only a
fraction is pertinent," said co-author Alexander Petschm, a postdoctoral
research associate at SLAC's Linac Coherent Light Source (LCLS) and
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Stanford Institute for Materials and Energy Sciences (SIMES).

"By simulating thousands of potential results, we constructed a machine
learning model trained to discern nuanced differences in data curves that
are virtually indistinguishable to the human eye."

Pieces falling into place

The team wanted to see if they could make measurements at LCLS, feed
them into a machine learning algorithm, and recover the microscopic
details of the material as they measured. They did thousands of
simulations on what they would measure, with a range of parameters,
and fed them all into an algorithm to learn from all the different spectra
so they could predict the answers from theory as soon as they measured
real spectra.

While waiting to carry out this experiment at the LCLS, it turned out,
the measurements they really wanted to make were very similar to
inelastic neutron scattering. Petsch realized that neutron scattering data
from his thesis aligned perfectly with the team's simulations, led by
Zhurun (Judy) Ji, a Stanford University Science Fellow. When the team
applied their machine learning model to this real-world data, it was able
to overcome challenges, such as noise and missing data points.

Traditionally, researchers rely on intuition, simulations, and post-
experiment analysis to guide their next steps. The team demonstrated
how their approach could continuously analyze data in real time. This
showed the potential for researchers to determine when they've gathered
enough data to end an experiment, further streamlining the process. One
of the most exciting developments is the potential of this approach for
continuous real-time analysis, providing insights into when sufficient
data is obtained to conclude an experiment.
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"Our machine learning model, trained before the experiment even
begins, can rapidly guide the experimental process," said SLAC scientist
Josh Turner, who oversaw the research. "It could change the way
experiments are conducted at facilities like LCLS."

Opening up new avenues

The model's design isn't exclusive to neutron scattering. Named the
"coordinate network," it's adaptable across various scattering
measurements which involve data as a function of energy and
momentum.

"Machine learning and artificial intelligence are influencing many
different areas of science," said co-author Sathya Chitturi, a Ph.D.
student at Stanford University. "Applying new cutting-edge machine
learning methods to physics research can enable us to make faster
advancements and streamline experiments. It's exciting to consider what
we can tackle next based on these foundations. It opens up many new
potential avenues of research."

  More information: Sathya R. Chitturi et al, Capturing dynamical
correlations using implicit neural representations, Nature
Communications (2023). DOI: 10.1038/s41467-023-41378-4
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