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Anatomy of a MOS capacitor. (a) Schematic representation, where VG,Tox , and
tsi denote the applied gate voltage, oxide thickness, and depth of the
semiconductor from the surface. (b) Comparison of the normalized surface
potentials obtained from the numerical solution of PBE and SPE. It also shows
different regions of operation of a MOS capacitor based on. Credit: Authors

Machine learning (ML) is generally defined as data-driven technology
mimicking intelligent human abilities, which bit by bit upgrades its
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accuracy from experience. It starts with gathering massive amounts of
data, such as numbers, texts, images and so on. After training with the
data, ML algorithms build a logical model to identify patterns through
the least possible human intervention. With the help of sample training
data, programmers test the model's validity before introducing a new
dataset. The more training data, the better the prediction.

However, we cannot expect reliable patterns or predictions on new data
if the training dataset is biased, inconsistent or even wrong. But with the
rapid expansion of this field, we can constrain ML models by enforcing
a physics framework that consistently obeys natural laws.

In our recent work in Journal of Applied Physics, we have developed one
such physically constrained ML model to gain insight into the
electrostatics of a metal-oxide-semiconductor (MOS) capacitor, which is
the fundamental building block of present CMOS (complementary metal-
oxide-semiconductor) technology.

A MOS capacitor consists of a doped semiconductor body, a thin
insulator (i.e., oxide) and a metal electrode called the gate. Depending
upon the value of applied gate voltage, it operates in three modes:
accumulation, depletion and inversion. In accumulation mode, mobile
charge carriers similar to the dopant type form a thin layer by
accumulating at the oxide-semiconductor interface.

With increasing gate voltage, the interface gradually becomes depleted
of mobile charges, leaving immobile ions of the opposite polarity
behind. It gives rise to an expanding potential drop at the semiconductor
surface. With further escalation in gate voltage, a layer of mobile charge
carriers of inverted dopant type but of similar concentration forms
beneath the oxide-semiconductor interface. Hence, we say the MOS
capacitor has entered into inversion mode.
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The electrostatic of a MOS capacitor is governed by the Poisson-
Boltzmann equation (PBE), which is a highly nonlinear differential
equation (DE). A DE represents the interrelation between a function of
one or more independent variables and its derivatives. The function
signifies a physical quantity and the derivative indicates the rate of
change with respect to the independent variables.

Solving nonlinear DEs on a computer is preferable since analytical
solutions are usually tricky. Standard techniques (e.g., finite difference
method, finite element method, shooting methods, splines) and user-
friendly software packages built on these techniques are available for
solving various DEs.

Neural networks (NNs), a subset of ML that has emerged in the recent
past with significant impacts in several science and engineering
disciplines, can solve nonlinear DEs effortlessly. They use
interconnected nodes in a layered structure resembling the human brain,
which makes biological neurons signal to one another.

NNs can accurately approximate complicated multivariate functions and
deal with difficulties in conventional techniques, e.g., dependence on
discretization in finite element methods and splines. The primary
drawback of NNs is that their training is slow and computationally
exhausting. However, we have prevailed over this challenge with
improvements in computing and optimization techniques. Here, we
investigate whether a machine can learn the physical principle of a MOS
capacitor by solving the PBE using ML.
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Feedforward neural network used for constructing the trial solution of the
Poisson–Boltzmann equation. (b) Variation of a threshold voltage as a function
of for different doping concentrations. (c) Model extrapolation of normalized
gate capacitance on the scale; the shaded region represents the sampling domain.
Credit: Authors

An approach called PINN (physics-informed neural network) has
already become very popular for solving DEs arising from physical
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sciences (Burger equation, Schrodinger equation, etc.). Though it is
pretty versatile and can be used to tackle any DE, the boundary
conditions (BCs) are not hard-constrained in PINN.

Rather, along with the DE, they are combined as a penalty into a loss
function, which computes the difference between predicted and actual
values in the ML model. Therefore, it does not guarantee to satisfy the
BCs exactly. On the other hand, Lagaris et al have proposed another
technique to circumvent this issue.

It uses the governing equation to find a trial solution that properly fits
the DE. This approach exactly satisfies the BCs. However, there is no
general procedure to construct such trial solutions, especially for
intricate boundary conditions we face in the case of an MOS capacitor.

Our approach to solving PBE for MOS capacitors is motivated by PINN
and the method of Lagaris et al. Until now, the latter method has been
employed to generate trials for Neumann and Dirichlet BCs, which is
relatively straightforward. In comparison, our PBE requires both simple
Dirichlet BC and complex Robin BC involving a function and its
derivate.

Despite its highly nonlinear nature, we showed that it is challenging yet
possible to use the method of Lagaris et al. to build trial solutions in a
functional form (i.e., a function that takes one or more functions as
arguments) that satisfies both BCs of the PBE. In our model, we have
precisely sampled the physical domain of the device to construct the loss
function from the trial solution.

The number of samples determines the complexity of computing the loss
function and optimizing the trials. Therefore, we have conceived a
physics-based sampling scheme and introduced device parameters
stochastically into the model. This approach has assisted the model to
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attain exceptional accuracy.

We have validated our model against traditional numerical methods
available in Python, as well as the industry-standard surface potential
equation (SPE).

Through this study, we have found that our NN model can learn the
relationship between input variables (i.e., thickness of the
semiconductor, gate voltage, oxide thickness, and doping concentration)
and the semiconductor potential.

Moreover, it is able to capture several relevant aspects of MOS device
physics, such as the doping-dependent depletion width, variation of
threshold voltage with oxide thickness and doping, and the low-
frequency capacitance-voltage characteristics, in addition to interpreting
the accumulation, depletion and inversion mechanisms. This model
continues to obey device physics even outside the sampling domain.

In summary, for the first time, we report the possibility of an ML model
to replicate the fundamental physics of MOS capacitors without using
any labeled data (in contrast to typical supervised ML). We show that the
commonly used PINN methodology fails to learn the Poisson-Boltzmann
equation due to its dynamic nature posed by the unique boundary
conditions.

We formulate a parametric model that naturally satisfies the boundary
conditions so that the expressive power of neural networks can be
harnessed to secure solutions with exceptional accuracy. In addition, we
show that the proposed model can accurately capture critical insights
such as depletion width, threshold voltage, inversion charge, etc.

This story is part of Science X Dialog, where researchers can report
findings from their published research articles. Visit this page for
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