

Boosting faith in the authenticity of open
source software

December 1 2023, by Steve Nadis

Credit: Alex Shipps and Kelsey Merrill via Midjourney/Massachusetts Institute
of Technology

Open source software—software that is freely distributed, along with its
source code, so that copies, additions, or modifications can be readily

1/6

made —is "everywhere," to quote the 2023 Open Source Security and
Risk Analysis Report. Of the computer programs used by major
industries, 96% include open source software, and 76% of those
programs consists of open source software. But the percentage of
software packages "containing security vulnerabilities remains
troublingly high," the report warned.

One concern is that "the software you've gotten from what you believe to
be a reliable developer has somehow been compromised," says Kelsey
Merrill, a software engineer who received a master's degree earlier this
year from MIT's Department of Electrical Engineering and Computer
Science. "Suppose that somewhere in the supply chain, the software has
been changed by an attacker who has malicious intent."

The risk of a security breach of this sort is by no means abstract. In
2020, to take a notorious example, the Texas company SolarWinds made
a software update to its widely used program called Orion. Hackers
broke into the system, inserting pernicious code into the software before
SolarWinds shipped the latest version of Orion to more than 18,000
customers, including Microsoft, Intel, and roughly 100 other companies,
as well as a dozen U.S. government agencies—including the
Departments of State, Defense, Treasury, Commerce, and Homeland
Security.

In this case, the product that was corrupted came from a large
commercial company, but lapses may be even more likely to occur in the
open source realm, Merrill says, "where people of varying
backgrounds—many of whom are hobbyists without any security
training—can publish software that gets used around the world."

She and three collaborators—her former advisor Karen Sollins, a
Principal Scientist at the MIT Computer Science and Artificial
Intelligence Laboratory; Santiago Torres-Arias, an assistant professor of

2/6

https://techxplore.com/tags/software+engineer/
https://techxplore.com/tags/software+update/

computer science at Purdue University; and Zachary Newman, a former
MIT graduate student and current research scientist at Chainguard
Labs—have developed a new system called Speranza, which is aimed at
reassuring software consumers that the product they are getting has not
been tampered with and is coming directly from a source they trust. The
paper is published on the arXiv preprint server.

"What we have done," explains Sollins, "is to develop, prove correct, and
demonstrate the viability of an approach that allows the [software]
maintainers to remain anonymous." Preserving anonymity is obviously
important, given that almost everyone—software developers
included—value their confidentiality. This new approach, Sollins adds,
"simultaneously allows [software] users to have confidence that the
maintainers are, in fact, legitimate maintainers and, furthermore, that the
code being downloaded is, in fact, the correct code of that maintainer."

So how can users confirm the genuineness of a software package in
order to guarantee, as Merrill puts it, "that the maintainers are who they
say they are?" The classical way of doing this, which was invented more
than 40 years ago, is by means of a digital signature, which is analogous
to a handwritten signature—albeit with far greater built-in security
through the use of various cryptographic techniques.

To carry out a digital signature, two "keys" are generated at the same
time—each of which is a number, composed of zeros and ones, that is
256 digits long. One key is designated "private," the other "public," but
they constitute a pair that is mathematically linked.

A software developer can use their private key, along with the contents
of the document or computer program, to generate a digital signature
that is attached exclusively to that document or program. A software
user can then use the public key—as well as the developer's signature,
plus the contents of the package they downloaded—to verify the

3/6

https://arxiv.org/abs/2305.06463
https://techxplore.com/tags/software+developers/
https://techxplore.com/tags/private+key/

package's authenticity.

Validation comes in the form of a yes or a no, a 1 or a zero. "Getting a 1
means that the authenticity has been assured," Merrill explains. "The
document is the same as when it was signed and is hence unchanged. A 0
means something is amiss, and you may not want to rely on that
document."

Although this decades-old approach is tried-and-true in a sense, it is far
from perfect. One problem, Merrill notes, "is that people are bad at
managing cryptographic keys, which consist of very long numbers, in a
way that is secure and prevents them from getting lost." People lose their
passwords all the time, Merrill says. "And if a software developer were
to lose the private key and then contact a user saying, 'Hey, I have a new
key,' how would you know who that really is?"

To address those concerns, Speranza is building off of "Sigstore"—a
system introduced last year to enhance the security of the software
supply chain. Sigstore was developed by Newman (who instigated the
Speranza project) and Torres-Arias, along with John Speed Meyers of
Chainguard Labs. Sigstore automates and streamlines the digital signing
process. Users no longer have to manage long cryptographic keys but are
instead issued ephemeral keys (an approach called "keyless signing") that
expire quickly—perhaps within a matter of minutes—and therefore
don't have to be stored.

A drawback with Sigstore stems from the fact that it dispensed with long-
lasting public keys, so that software maintainers instead have to identify
themselves—through a protocol called OpenID Connect (OIDC)—in a
way that can be linked to their email addresses. That feature, alone, may
inhibit the widespread adoption of Sigstore, and it served as the
motivating factor behind—and the raison d'etre for—Speranza. "We
take Sigstore's basic infrastructure and change it to provide privacy

4/6

guarantees," Merrill explains.

With Speranza, privacy is achieved through an original idea that she and
her collaborators call "identity co-commitments." Here, in simple terms,
is how the idea works: A software developer's identity, in the form of an
email address, is converted into a so-called "commitment" that consists
of a big pseudorandom number. (A pseudorandom number does not
meet the technical definition of "random" but, practically speaking, is
about as good as random.) Meanwhile, another big pseudorandom
number—the accompanying commitment (or co-commitment)—is
generated that is associated with a software package that this developer
either created or was granted permission to modify.

In order to demonstrate to a prospective user of a particular software
package as to who created this version of the package and signed it, the
authorized developer would publish a proof that establishes an
unequivocal link between the commitment that represents their identity
and the commitment attached to the software product. The proof that is
carried out is of a special type, called a zero-knowledge proof, which is a
way of showing, for instance, that two things have a common bound,
without divulging details as to what those things—such as the developer's
email address—actually are.

"Speranza ensures that software comes from the correct source without
requiring developers to reveal personal information like their email
addresses," comments Marina Moore, a Ph.D. candidate at the New
York University Center for Cyber Security. "It allows verifiers to see
that the same developer signed a package several times without revealing
who the developer is or even other packages that they work on. This
provides a usability improvement over long-term signing keys, and a
privacy benefit over other OIDC-based solutions like Sigstore."

Marcela Mellara, a research scientist in the Security and Privacy

5/6

https://techxplore.com/tags/software+developer/

Research group at Intel Labs, agrees. "This approach has the advantage
of allowing software consumers to automatically verify that the package
they obtain from a Speranza-enabled repository originated from an
expected maintainer, and gain trust that the software they are using is
authentic."

 More information: Kelsey Merrill et al, Speranza: Usable, privacy-
friendly software signing, arXiv (2023). DOI:
10.48550/arxiv.2305.06463

Provided by Massachusetts Institute of Technology

Citation: Boosting faith in the authenticity of open source software (2023, December 1) retrieved
28 April 2024 from
https://techxplore.com/news/2023-12-boosting-faith-authenticity-source-software.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

https://dx.doi.org/10.48550/arxiv.2305.06463
https://dx.doi.org/10.48550/arxiv.2305.06463
https://techxplore.com/news/2023-12-boosting-faith-authenticity-source-software.html
http://www.tcpdf.org

