

A faster way to optimize deep learning
models

May 31 2024, by Alvin Lee

Credit: CC0 Public Domain

AI and its related terms are now fairly well known. Many people have
heard of terms such as "neural network" and may even associate "CNN"
with "Convolutional Neural Network" instead of the news organization.

1/5

Those with more than a passing interest in AI might even know about
AlexNet, the pioneering CNN architecture that revolutionized image
recognition and deep learning in 2012.

What is lesser known is the use of optimizers or optimization algorithms,
which help improve the performance of AI models. For example,
computer vision AI models would need optimizers that receive data
input (a visual image) and correctly 'predict' that data, i.e., correctly
identify an image of a panda as "panda" instead of "bear" or "koala".

"Panda" would be the ground truth that the AI model should correctly
predict every time, while the difference between the AI prediction and
the ground truth is quantified into a figure called training loss.

"Given a task, an AI model will take input samples and output its
prediction. Without training, an AI model often cannot predict correctly,
and thus perform poor on the task," explains Zhou Pan, Assistant
Professor of Computer Science at SMU. "An optimizer is to update an
AI model's parameters so that the AI model can make correct
predictions."

"The primary role of an optimizer is to feed training samples into the AI
model, then compute the training loss, i.e., the discrepancy between
model's prediction and the ground truth prediction, and finally adjust the
model parameter to minimize the training loss."

Solving overshoot

Different types of deep learning networks require different optimizers,
often with the most suitable one selected only after multiple trials that
are often costly and time-consuming.

In simple words, an optimizer does its job when an AI model's output

2/5

https://techxplore.com/tags/model/

corresponds to the lowest point on an approximately V-shaped curve
charting training loss, which is often referred to as the convergence
point. This is where the model has learned the optimal set of parameters,
such that further training iterations do not significantly improve its
performance on the task at hand.

A key obstacle to efficient optimization is something called the
"Overshoot Issue", whereby an optimizer produces predictions
corresponding to the other side of the V-shaped curve, which requires
recalibration to bring the prediction back to the contours of the curve.

Professor Zhou's latest project, titled "Adan: Adaptive Nesterov
Momentum Algorithm for Faster Optimizing Deep Models," attempts to
solve the overshoot issue.

He explains, "The Adan optimizer can accelerate the process to find
good model parameters of a model. At each training iteration, like other
optimizers, Adan also feeds data into the model and then computes the
training loss, and finally computes the gradients of model parameters.

"But when it uses the gradient to update the parameter, it will first take a
step to update the model parameter, looking at whether the current
model parameter update is good or not. If it is, then it will update the
model parameter in a larger step; otherwise, it will take a small step to
update the parameter slowly. This ensures the parameter update is
always in the right way, and thus guarantees faster convergence speed."

An Epoch(al) achievement

Improvements in neural network training can be measured in epochs,
where one epoch is a complete pass or cycle through the entire training
dataset.

3/5

https://arxiv.org/abs/2208.06677
https://techxplore.com/tags/neural+network/

Professor Zhou expects Adan to outdo existing state of the art (SoTA)
optimizers for major deep learning tasks such as visual, language, and
reinforcement learning such as that which underpinned AlphaGo, the AI
model that beat the world's top-ranked human player in the ancient
board game, Go, in 2017.

"Overall, Adan can use half of training iteration to achieve comparable
performance of SoTA optimizers," Professor Zhou elaborates.

"For vision tasks, on the ViT and Swin models for supervised image
classification task, Adan can use 150 training epochs to achieve similar
performance as the SoTA optimizer, AdamW, which trains 300 epochs.
On the MAE model for self-supervised image classification tasks, Adan
can use 800 training epochs to achieve similar performance as the SoTA
optimizer, AdamW, which trains 1,600 epochs.

"For language tasks, on GPT2, Adan can use 150k training iterations to
achieve similar performance as the SoTA optimizer, Adam, which trains
150k training iterations; on Transformer-XL, Adan can use 100k
training iterations to achieve the same performance as the SoTA
optimizer, Adam, which trains 200k training iterations."

For RL, or reinforcement learning tasks, Adan works on four games,
namely Ant, Half Cheetah, Humanoid, and Walker2d. For simplicity,
one often calls them MuJoCo games. These games are designed to
control the body of a robot to finish different activities in a 3D
environment stably and robustly, like walking and running.

"On RL, by using the same training iterations, Adan always achieves
higher performance than the SoTA optimizer, Adam, on the four tested
game tasks," says Professor Zhou.

4/5

https://techxplore.com/tags/deep+learning/
https://mujoco.org/
https://techxplore.com/tags/training/

Provided by Singapore Management University

Citation: A faster way to optimize deep learning models (2024, May 31) retrieved 16 August
2024 from https://techxplore.com/news/2024-05-faster-optimize-deep.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://techxplore.com/news/2024-05-faster-optimize-deep.html
http://www.tcpdf.org

