

Six NFR strategies to improve software
performance and security

June 25 2024, by Matt Shipman

Credit: CC0 Public Domain

Non-functional requirements (NFRs) are important aspects of a software
system, but are often overlooked by developers because they're not the
aspects of a program that users interact with directly. A new study delves

1/4

https://andersonjso.github.io/preprints/fse24oliveira.pdf

into how developers approach the crafting of NFRs and outlines six best
practices for addressing NFRs that can help to ensure a program's
security and performance in the near and long term.

NFRs play a meaningful role in how software operates. Examples of
NFRs include: how secure a system is; performance, such as how long it
takes a system to execute commands from a user; robustness, which
refers to how well a system can recover after an error occurs; and
maintainability, which is how easy it is for developers to update the
system over time.

"NFRs are essential elements of any piece of software," says Wesley K.
G. Assunção, co-author of a paper on the topic and an associate
professor of computer science at North Carolina State University.

"For this study, we wanted to answer some fundamental questions about
NFRs. Who are the experts in charge of these requirements? How do
software engineers discuss and manage these types of requirements?"

To that end, the researchers looked at 1,533 pull requests on GitHub
pertaining to NFRs, to see how developers discussed and addressed
issues related to NFRs. The researchers also performed an in-depth
analysis of 63 developers who were particularly active on issues
pertaining to NFRs and conducted a survey with 44 developers to get a
deeper understanding of their views regarding NFRs.

"Perhaps unsurprisingly, we found that developers discuss NFRs both
proactively and reactively—before there's a problem and after there's a
problem," says Assunção. "And the developers who were most active in
discussing NFRs largely had key roles in the software project. This
suggests that NFRs are a primary concern during software maintenance
and evolution. The study underscores the role that NFRs play in software
quality and the success of software systems."

2/4

https://techxplore.com/tags/software+engineers/

Based on their analysis and discussions with developers, the researchers
identified six key points that are critical to developing and maintaining
NFRs that will help a system thrive:

Prioritization and planning: NFRs should be treated with as much
priority as other requirements. They should be planned in
advance and reviewed throughout a development project.
Identification and discussion: NFRs should be identified and
discussed early in the development process, ideally in the design
phase. During the evolution of the software, these NFRs should
be revisited if necessary.
Use of technologies allied with testing: The adequacy of the NFR
can be verified through technologies already approved by the
market, where the NFRs associated with those projects satisfy
the project's complexity.
Benchmarks: Using benchmarks to simulate the behavior of a
piece of code or algorithm under different conditions is
recommended, since it allows developers to review and refactor
code when it is not meeting the project-specified NFRs.
Documentation of best practices: By keeping the NFRs well-
documented, developers will have a starting point to address any
NFR problem when they appear.
Long-term mindset: Properly addressing NFRs makes it more
likely that a piece of software will have a long lifespan. To
guarantee this, a system should have a good user experience,
should be designed to scale, and should be easy to maintain by
future developers.

"The take-home message here is clear," says Assunção. "We understand
that features and functionalities of a software system—the parts of the
software that are not NFRs—represent a system's business capabilities
and have strategic value for companies. However, our work highlights
the fundamental role that NFRs play on the overall quality of a software

3/4

https://techxplore.com/tags/best+practices/

system, making them key to a system's success."

The paper, "Understanding Developers' Discussions and Perceptions on
Non-Functional Requirements: The Case of the Spring Ecosystem," will
be presented July 19 at the 32nd International Conference on the
Foundations of Software Engineering, being held in Porto de Galinhas,
Brazil.

First author of the paper is Anderson Oliveira of PUC-Rio, Brazil. The
paper is co-authored by João Lucas Correia, Juliana Alves Pereira,
Daniel Coutinho, Caio Barbosa, Paulo Vítor C. F. Libório and
Alessandro Garcia of PUC-Rio; and by Rafael de Mello of the Federal
University of Rio de Janeiro, Brazil.

 More information: Oliveira et al. Understanding Developers'
Discussions and Perceptions on Non-Functional Requirements: The Case
of the Spring Ecosystem, DOI: 10.1145/3643750,
andersonjso.github.io/preprints/fse24oliveira.pdf

Provided by North Carolina State University

Citation: Six NFR strategies to improve software performance and security (2024, June 25)
retrieved 29 June 2024 from https://techxplore.com/news/2024-06-nfr-strategies-software.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://andersonjso.github.io/preprints/fse24oliveira.pdf
https://andersonjso.github.io/preprints/fse24oliveira.pdf
https://2024.esec-fse.org/details/fse-2024-research-papers/53/Understanding-Developers-Discussions-and-Perceptions-on-Non-Functional-Requirements-
https://2024.esec-fse.org/details/fse-2024-research-papers/53/Understanding-Developers-Discussions-and-Perceptions-on-Non-Functional-Requirements-
https://dx.doi.org/10.1145/3643750
https://andersonjso.github.io/preprints/fse24oliveira.pdf
https://techxplore.com/news/2024-06-nfr-strategies-software.html
http://www.tcpdf.org

