
 

Machine learning unlocks secrets to advanced
alloys
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On the left, a traditional alloy with a main element in blue and a small amount of
a different element in yellow. High-entropy alloys (as seen on the right) contain
several elements in nearly equal amounts (three in this figure), creating many
possibilities for chemical patterns. "It's like you're making a recipe with a lot
more ingredients," says Yifan Cao, on of the authors of the paper, but it also
adds significant chemical complexity. Credit: Massachusetts Institute of
Technology
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The concept of short-range order (SRO)—the arrangement of atoms
over small distances—in metallic alloys has been underexplored in
materials science and engineering. But the past decade has seen renewed
interest in quantifying it, since decoding SRO is a crucial step toward
developing tailored high-performing alloys, such as stronger or heat-
resistant materials.

Understanding how atoms arrange themselves is no easy task and must
be verified using intensive lab experiments or computer simulations
based on imperfect models. These hurdles have made it difficult to fully
explore SRO in metallic alloys.

But Killian Sheriff and Yifan Cao, graduate students in MIT's
Department of Materials Science and Engineering (DMSE), are using 
machine learning to quantify, atom by atom, the complex chemical
arrangements that make up SRO. Under the supervision of Assistant
Professor Rodrigo Freitas, and with the help of Assistant Professor Tess
Smidt in the Department of Electrical Engineering and Computer
Science, their work was recently published in Proceedings of the National
Academy of Sciences.

Interest in understanding SRO is linked to the excitement around 
advanced materials called high-entropy alloys, whose complex
compositions give them superior properties.

Typically, materials scientists develop alloys by using one element as a
base and adding small quantities of other elements to enhance specific
properties. The addition of chromium to nickel, for example, makes the
resulting metal more resistant to corrosion.

Unlike most traditional alloys, high-entropy alloys have several elements,
from three up to 20, in nearly equal proportions. This offers a vast
design space. "It's like you're making a recipe with a lot more
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ingredients," says Cao.

The goal is to use SRO as a "knob" to tailor material properties by
mixing chemical elements in high-entropy alloys in unique ways. This
approach has potential applications in industries such as aerospace,
biomedicine, and electronics, driving the need to explore permutations
and combinations of elements, Cao says.

Capturing short-range order

Short-range order refers to the tendency of atoms to form chemical
arrangements with specific neighboring atoms. While a superficial look
at an alloy's elemental distribution might indicate that its constituent
elements are randomly arranged, it is often not so.

"Atoms have a preference for having specific neighboring atoms
arranged in particular patterns," Freitas says. "How often these patterns
arise and how they are distributed in space is what defines SRO."

Understanding SRO unlocks the keys to the kingdom of high-entropy
materials. Unfortunately, not much is known about SRO in high-entropy
alloys. "It's like we're trying to build a huge Lego model without
knowing what's the smallest piece of Lego that you can have," says
Sheriff.

Traditional methods for understanding SRO involve small computational
models, or simulations with a limited number of atoms, providing an
incomplete picture of complex material systems.

"High-entropy materials are chemically complex—you can't simulate
them well with just a few atoms; you really need to go a few length
scales above that to capture the material accurately," Sheriff says.
"Otherwise, it's like trying to understand your family tree without
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knowing one of the parents."

SRO has also been calculated by using basic mathematics, counting
immediate neighbors for a few atoms and computing what that
distribution might look like on average. Despite its popularity, the
approach has limitations, as it offers an incomplete picture of SRO.

Fortunately, researchers are leveraging machine learning to overcome
the shortcomings of traditional approaches for capturing and quantifying
SRO.

Hyunseok Oh, assistant professor in the Department of Materials
Science and Engineering at the University of Wisconsin at Madison and
a former DMSE postdoc, is excited about investigating SRO more fully.
Oh, who was not involved in this study, explores how to leverage alloy
composition, processing methods, and their relationship to SRO to
design better alloys.

"The physics of alloys and the atomistic origin of their properties depend
on short-range ordering, but the accurate calculation of short-range
ordering has been almost impossible," says Oh.

A two-pronged machine learning solution

To study SRO using machine learning, it helps to picture the crystal
structure in high-entropy alloys as a connect-the-dots game in an
coloring book, Cao says.

"You need to know the rules for connecting the dots to see the pattern."
And you need to capture the atomic interactions with a simulation that is
big enough to fit the entire pattern.

First, understanding the rules meant reproducing the chemical bonds in 
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high-entropy alloys. "There are small energy differences in chemical
patterns that lead to differences in short-range order, and we didn't have
a good model to do that," Freitas says. The model the team developed is
the first building block in accurately quantifying SRO.

The second part of the challenge, ensuring that researchers get the whole
picture, was more complex. High-entropy alloys can exhibit billions of
chemical "motifs," combinations of arrangements of atoms. Identifying
these motifs from simulation data is difficult because they can appear in
symmetrically equivalent forms—rotated, mirrored, or inverted. At first
glance, they may look different but still contain the same chemical
bonds.

The team solved this problem by employing 3D Euclidean neural
networks. These advanced computational models allowed the researchers
to identify chemical motifs from simulations of high-entropy materials
with unprecedented detail, examining them atom by atom.

The final task was to quantify the SRO. Freitas used machine learning to
evaluate the different chemical motifs and tag each with a number.
When researchers want to quantify the SRO for a new material, they run
it by the model, which sorts it in its database and spits out an answer.

The team also invested additional effort in making their motif
identification framework more accessible. "We have this sheet of all
possible permutations of [SRO] already set up, and we know what
number each of them got through this machine learning process," Freitas
says. "So later, as we run into simulations, we can sort them out to tell us
what that new SRO will look like." The neural network easily recognizes
symmetry operations and tags equivalent structures with the same
number.

"If you had to compile all the symmetries yourself, it's a lot of work.
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Machine learning organized this for us really quickly and in a way that
was cheap enough that we could apply it in practice," Freitas says.

Enter the world's fastest supercomputer

This summer, Cao and Sheriff and team will have a chance to explore
how SRO can change under routine metal processing conditions, like
casting and cold-rolling, through the U.S. Department of Energy's
INCITE program, which allows access to Frontier, the world's fastest
supercomputer.

"If you want to know how short-range order changes during the actual
manufacturing of metals, you need to have a very good model and a very
large simulation," Freitas says. The team already has a strong model; it
will now leverage INCITE's computing facilities for the robust
simulations required.

"With that we expect to uncover the sort of mechanisms that
metallurgists could employ to engineer alloys with pre-determined
SRO," Freitas adds.

Sheriff is excited about the research's many promises. One is the 3D
information that can be obtained about chemical SRO. Whereas
traditional transmission electron microscopes and other methods are
limited to two-dimensional data, physical simulations can fill in the dots
and give full access to 3D information, Sheriff says.

"We have introduced a framework to start talking about chemical
complexity," Sheriff explains. "Now that we can understand this, there's
a whole body of materials science on classical alloys to develop
predictive tools for high-entropy materials."

That could lead to the purposeful design of new classes of materials

6/7



 

instead of simply shooting in the dark.

  More information: Killian Sheriff et al, Quantifying chemical short-
range order in metallic alloys, Proceedings of the National Academy of
Sciences (2024). DOI: 10.1073/pnas.2322962121

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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