
 

Think simpler, flow faster: A deep learning
approach to provide accurate solutions 1,000
times faster than before
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Contour plots (A, C, E, G) compare the input conditions, traditional finite
difference method solutions, and the solutions generated by model B3, the most
advanced model in the study. Velocity profiles (B, D, F, H) display detailed
velocity information at specific cross-sections of the simulation domain. Credit:
Shen Wang et al.

Analyzing and simulating fluid flow is a challenging mathematical
problem that impacts various scenarios, including video game engines,
ocean current modeling and hurricane forecasting. The core of this
challenge lies in solving the Navier–Stokes equations, a set of classical
equations that describe fluid dynamics.

Recently, deep learning has emerged as a powerful tool to accelerate
equation solving. Using this technique, a team designed a novel approach
that can provide accurate solutions 1,000 times faster than traditional 
equation solvers. The team's study was published June 26 in Intelligent
Computing.

The team tested their approach on a three-variable lid-driven cavity flow
problem in a large 512 × 512 computational domain. In the experiment,
conducted on a consumer desktop system with an Intel Core i5 8400
processor, their method achieved inference latencies of just 7
milliseconds per input, a great improvement compared to the 10 seconds
required by traditional finite difference methods.

Apart from being swift, the new deep learning approach is also low-cost
and highly adaptable, and thus it could be used to make real-time
predictions on everyday digital devices. It integrates the efficiency of
supervised learning techniques with the necessary physics of traditional
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methods.

Although other supervised learning models can rapidly simulate and
predict the closest numerical solutions to the Navier–Stokes equations,
their performance is constrained by the labeled training data, which
could lack the size, diversity and fundamental physical information
needed to solve the equations.

To work around data-driven limitations and reduce computation load,
the team trained a series of models stage by stage in a weakly supervised
way. Initially, only a minimal amount of pre-computed "warm-up" data
was used to facilitate model initialization. This allowed the base models
to quickly adapt to the fundamental dynamics of fluid flow before
progressing to more complex scenarios and eliminated the need for
extensive labeled datasets.

All models are based on a convolutional U-Net architecture, which the
team customized for complex fluid dynamics problems. As a modified
autoencoder, the U-Net consists of an encoder that compresses the input
data into compact representations, and a decoder that reconstructs this
data back into high-resolution outputs. The encoder and decoder are
connected through skip connections, which help preserve important
features and improve the quality of the outputs.

To ensure the outputs adhere to the necessary constraints, the team also
developed a custom loss function that incorporates both data-driven and
physics-informed components.

Like traditional methods, the team's approach uses a 2D matrix to
represent the computational domain, which sets the determining
constraints of the fluid dynamics problems. The constraints include
geometric constraints such as the size and shape of the domain, physical
constraints such as the physical features of the flow and applicable
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physical laws, and boundary conditions that define the problems
mathematically.

This format allows unknown variables to be directly integrated into the
constraints as part of the input data so that the trained models can handle
various boundary conditions and geometries, including unseen
complicated cases.

  More information: Shen Wang et al, Stacked Deep Learning Models
for Fast Approximations of Steady-State Navier–Stokes Equations for
Low Re Flow, Intelligent Computing (2024). DOI:
10.34133/icomputing.0093
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