Sensor-packed glove learns signatures of the human grasp
29 May 2019, by Rob Matheson

In a paper published in *Nature*, the researchers describe a dataset they compiled using STAG for 26 common objects—including a soda can, scissors, tennis ball, spoon, pen, and mug. Using the dataset, the system predicted the objects' identities with up to 76 percent accuracy. The system can also predict the correct weights of most objects within about 60 grams.

Similar sensor-based gloves used today run thousands of dollars and often contain only around 50 sensors that capture less information. Even though STAG produces very high-resolution data, it's made from commercially available materials totaling around $10.

The tactile sensing system could be used in combination with traditional computer vision and image-based datasets to give robots a more human-like understanding of interacting with objects.

"Humans can identify and handle objects well because we have tactile feedback. As we touch objects, we feel around and realize what they are. Robots don't have that rich feedback," says Subramanian Sundaram Ph.D. ’18, a former graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL). "We've always wanted robots to do what humans can do, like doing the dishes or other chores. If you want robots to do these things, they must be able to manipulate objects really well."

The researchers also used the dataset to measure the cooperation between regions of the hand during object interactions. For example, when someone uses the middle joint of their index finger, they rarely use their thumb. But the tips of the index and middle fingers always correspond to thumb usage. "We quantifiably show, for the first time, that, if I'm using one part of my hand, how likely I am to use another part of my hand," he says.

Prosthetics manufacturers can potentially use
information to, say, choose optimal spots for placing human grasp.
pressure sensors and help customize prosthetics to
the tasks and objects people regularly interact with.

Joining Sundaram on the paper are: CSAIL
postdocs Petr Kellnhofer and Jun-Yan Zhu; CSAIL
graduate student Yunzhu Li; Antonio Torralba, a
professor in EECS and director of the MIT-IBM
Watson AI Lab; and Wojciech Matusik, an
associate professor in electrical engineering and
computer science and head of the Computational
Fabrication group.

The STAG as a platform to learn from the human grasp.

STAG is laminated with an electrically conductive
polymer that changes resistance to applied
pressure. The researchers sewed conductive
threads through holes in the conductive polymer
film, from fingertips to the base of the palm. The
threads overlap in a way that turns them into
pressure sensors. When someone wearing the
glove feels, lifts, holds, and drops an object, the
sensors record the pressure at each point.

The threads connect from the glove to an external
circuit that translates the pressure data into "tactile
maps," which are essentially brief videos of dots
growing and shrinking across a graphic of a hand. The
dots represent the location of pressure points,
and their size represents the force—the bigger the
dot, the greater the pressure.

From those maps, the researchers compiled a
dataset of about 135,000 video frames from
interactions with 26 objects. Those frames can be
used by a neural network to predict the identity and
weight of objects, and provide insights about the

To identify objects, the researchers designed a
convolutional neural network (CNN), which is
usually used to classify images, to associate
specific pressure patterns with specific objects. But
the trick was choosing frames from different types
of grasps to get a full picture of the object.

The idea was to mimic the way humans can hold
an object in a few different ways in order to
recognize it, without using their eyesight. Similarly,
the researchers' CNN chooses up to eight
semirandom frames from the video that represent
the most dissimilar grasps—say, holding a mug from
the bottom, top, and handle.

But the CNN can't just choose random frames from
the thousands in each video, or it probably won't
choose distinct grips. Instead, it groups similar
frames together, resulting in distinct clusters
corresponding to unique grasps. Then, it pulls one
frame from each of those clusters, ensuring it has a
representative sample. Then the CNN uses the
contact patterns it learned in training to predict an
object classification from the chosen frames.

"We want to maximize the variation between the
frames to give the best possible input to our
network," Kellnhofer says. "All frames inside a
single cluster should have a similar signature that
represent the similar ways of grasping the object.
Sampling from multiple clusters simulates a human
interactively trying to find different grasps while
exploring an object."

For weight estimation, the researchers built a
separate dataset of around 11,600 frames from
tactile maps of objects being picked up by finger
and thumb, held, and dropped. Notably, the CNN
wasn't trained on any frames it was tested on,
meaning it couldn't learn to just associate weight
with an object. In testing, a single frame was
inputted into the CNN. Essentially, the CNN picks
out the pressure around the hand caused by the
object's weight, and ignores pressure caused by
other factors, such as hand positioning to prevent
the object from slipping. Then it calculates the
weight based on the appropriate pressures.
The system could be combined with the sensors already on robot joints that measure torque and force to help them better predict object weight. "Joints are important for predicting weight, but there are also important components of weight from fingertips and the palm that we capture," Sundaram says.

This story is republished courtesy of MIT News (http://web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Provided by Massachusetts Institute of Technology