New fast-switching electrochromic devices based on an all-solid-state tandem structure
21 February 2022, by Ingrid Fadelli

"We report fast-switching electrochromic devices that are based on an all-solid-state tandem structure and use protons as the diffusing species," Zewei Shao and his colleagues wrote in their paper. "We use tungsten trioxide (WO₃) as the electrochromic material, and poly (3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as the solid-state proton source."

The researchers evaluated the structure they developed in a series of initial tests and found that it attained very promising results, yet had a low contrast ratio (i.e., a slight difference between its on and off transmittance of light). To overcome this limitation, they introduced a solid polymeric electrolyte layer on top of the PEDOT:PSS layer. This layer effectively provided sodium ions to the PEDOT:PSS and pumped protons into the WO₃ layer, via a process known as ion exchange.

"The resulting electrochromic devices exhibit high contrast ratios (more than 90% at 650 nm), fast responses (coloration to 90% in 0.7 s and bleaching to 65% in 0.9 s and 90% in 7.1 s), good coloration efficiency (109 cm² C⁻¹ at 670 nm) and excellent cycling stability (less than 10% degradation of contrast ratio after 3000 cycles)," the researchers explained in their paper.

To demonstrate the scalability and potential of the electrochromic devices they developed, Shao and his colleagues used them to create flexible structures with a large area of 30x40 cm². The fact that they succeeded in creating these structures suggests that their devices could effectively be used to build smart windows of various sizes.

In the future, the electrochromic devices presented by this team of researchers could be introduced and tested in different real-world settings. In addition to utilizing them to create smart windows, engineers could use them to develop new information displays and triple-state optical devices.

© 2022 Science X Network

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.