Robotics

Robot circulatory system powers possibilities

Untethered robots suffer from a stamina problem. A possible solution: a circulating liquid—"robot blood"—to store energy and power its applications for sophisticated, long-duration tasks.

Engineering

Smartphone case offers blood glucose monitoring on the go

Engineers at the University of California San Diego have developed a smartphone case and app that could make it easier for patients to record and track their blood glucose readings, whether they're at home or on the go.

Engineering

Tattoo-like skin health monitor needs no batteries

(Tech Xplore)—An international team of researchers has developed an ultra-thin health monitoring device that affixes to the skin like a patch and looks somewhat like a tattoo. As they note in their paper published in the ...

Engineering

Liquid metal may point way to wearable ultrasound devices

The best-known byproduct of ultrasound—so named because its frequencies exceed the range of the human ear—is, in fact, not audio but visual: 2D imagery, often of a fetus maturing in the womb. But ultrasound has also found ...

Energy & Green Tech

First battery prototype using hemoglobin developed

A team with the Chemical Institute for Energy and the Environment (IQUEMA) at the University of Cordoba has come up with a battery that uses hemoglobin as an electrochemical reaction facilitator, functioning for around 20–30 ...

page 2 from 13

Blood

Blood is a specialized bodily fluid that delivers necessary substances to the body's cells — such as nutrients and oxygen — and transports waste products away from those same cells.

In vertebrates, it is composed of blood cells suspended in a liquid called blood plasma. Plasma, which comprises 55% of blood fluid, is mostly water (90% by volume), and contains dissolved proteins, glucose, mineral ions, hormones, carbon dioxide (plasma being the main medium for excretory product transportation), platelets and blood cells themselves. The blood cells present in blood are mainly red blood cells (also called RBCs or erythrocytes) and white blood cells, including leukocytes and platelets. The most abundant cells in vertebrate blood are red blood cells. These contain hemoglobin, an iron-containing protein, which facilitates transportation of oxygen by reversibly binding to this respiratory gas and greatly increasing its solubility in blood. In contrast, carbon dioxide is almost entirely transported extracellularly dissolved in plasma as bicarbonate ion.

Vertebrate blood is bright-red when its hemoglobin is oxygenated. Some animals, such as crustaceans and mollusks, use hemocyanin to carry oxygen, instead of hemoglobin. Insects and some molluscs use a fluid called hemolymph instead of blood, the difference being that hemolymph is not contained in a closed circulatory system. In most insects, this "blood" does not contain oxygen-carrying molecules such as hemoglobin because their bodies are small enough for their tracheal system to suffice for supplying oxygen.

Jawed vertebrates have an adaptive immune system, based largely on white blood cells. White blood cells help to resist infections and parasites. Platelets are important in the clotting of blood. Arthropods, using hemolymph, have hemocytes as part of their immune system.

Blood is circulated around the body through blood vessels by the pumping action of the heart. In animals having lungs, arterial blood carries oxygen from inhaled air to the tissues of the body, and venous blood carries carbon dioxide, a waste product of metabolism produced by cells, from the tissues to the lungs to be exhaled.

Medical terms related to blood often begin with hemo- or hemato- (also spelled haemo- and haemato-) from the Ancient Greek word αἶμα (haima) for "blood". In terms of anatomy and histology, blood is considered a specialized form of connective tissue, given its origin in the bones and the presence of potential molecular fibers in the form of fibrinogen.

This text uses material from Wikipedia, licensed under CC BY-SA