Robotics

Using tiny combustion engines to power very tiny robots

A team of mechanical engineers at Cornell University, working with a colleague from Technion-Israel Institute of Technology, has designed and built a tiny robot that is powered by a combustion engine. In their paper published ...

Engineering

How cars 'waste' two thirds of their fuel

With the rise in gas prices showing no signs of abating, it seems like an appropriate time to ask ourselves: are our cars not efficient enough? Europe has decided to ban the production of new combustion engine-powered vehicles ...

Energy & Green Tech

Mazda has fine ambitions for future gasoline engine

We get it. Car-makers say they are on board for a next chapter in the electrification of cars and they have teams dedicated to developing cars toward that end. Well-known brands are looking at alternative-fuel solutions such ...

Electronics & Semiconductors

Combustion creates Braille display for electronics

Imagine an iPad or a Kindle for the blind, with inflatable Braille that changes shape under a user's touch. A Cornell-led collaboration has made a crucial component for such a technology: A haptic array of densely packed ...

page 2 from 21

Combustion

Combustion (English pronunciation: /kəmˈbʌs.tʃən /) or burning is the sequence of exothermic chemical reactions between a fuel and an oxidant accompanied by the production of heat and conversion of chemical species. The release of heat can result in the production of light in the form of either glowing or a flame. Fuels of interest often include organic compounds (especially hydrocarbons) in the gas, liquid or solid phase.

In a complete combustion reaction, a compound reacts with an oxidizing element, such as oxygen or fluorine, and the products are compounds of each element in the fuel with the oxidizing element. For example:

A simple example can be seen in the combustion of hydrogen and oxygen, which is a commonly used reaction in rocket engines:

The result is water vapor.

Complete combustion is almost impossible to achieve. In reality, as actual combustion reactions come to equilibrium, a wide variety of major and minor species will be present such as carbon monoxide and pure carbon (soot or ash). Additionally, any combustion in atmospheric air, which is 78% nitrogen, will also create several forms of nitrogen oxides.

This text uses material from Wikipedia, licensed under CC BY-SA