Engineering

Monitoring electromagnetic signals in the brain with MRI

Researchers commonly study brain function by monitoring two types of electromagnetism—electric fields and light. However, most methods for measuring these phenomena in the brain are very invasive.

Energy & Green Tech

A potentially cheaper and 'cooler' way to transport hydrogen

In the continued effort to move humanity away from fossil fuels and towards more environmentally friendly energy sources, researchers in Japan have developed a new material capable storing hydrogen energy in a more efficient ...

Energy & Green Tech

Probing where protons go to develop better fuel cells

Solid oxide fuel cells, or SOFC, are a type of electrochemical device that generates electricity using hydrogen as fuel, with the only 'waste' product being water. Naturally, as we strive to reduce our carbon output and mitigate ...

Energy & Green Tech

Hydrogen production and carbon capture in a single step

Hydrogen production takes place using natural gas as the raw material, combined with a very special ceramic membrane. Both hydrogen production and CO2 capture are achieved in a single step, which makes the method highly energy ...

Engineering

Water distribution in fuel cells made visible in 4D

Teams from Helmholtz-Zentrum Berlin (HZB) and University College London (UCL) have visualized the water distribution in a fuel cell in three dimensions and in real time for the first time by evaluating neutron data from the ...

page 1 from 3

Hydrogen atom

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively-charged proton and a single negatively-charged electron bound to the nucleus by the Coulomb force. The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains no neutrons; other isotopes contain one or more neutrons. This article primarily concerns hydrogen-1.

The hydrogen atom has special significance in quantum mechanics and quantum field theory as a simple two-body problem physical system which has yielded many simple analytical solutions in closed-form.

In 1914, Niels Bohr obtained the spectral frequencies of the hydrogen atom after making a number of simplifying assumptions. These assumptions, the cornerstones of the Bohr model, were not fully correct but did yield the correct energy answers. Bohr's results for the frequencies and underlying energy values were confirmed by the full quantum-mechanical analysis which uses the Schrödinger equation, as was shown in 1925/26. The solution to the Schrödinger equation for hydrogen is analytical. From this, the hydrogen energy levels and thus the frequencies of the hydrogen spectral lines can be calculated. The solution of the Schrödinger equation goes much further than the Bohr model however, because it also yields the shape of the electron's wave function ("orbital") for the various possible quantum-mechanical states, thus explaining the anisotropic character of atomic bonds.

The Schrödinger equation also applies to more complicated atoms and molecules. However, in most such cases the solution is not analytical and either computer calculations are necessary or simplifying assumptions must be made.

This text uses material from Wikipedia, licensed under CC BY-SA