Engineering

Water distribution in fuel cells made visible in 4D

Teams from Helmholtz-Zentrum Berlin (HZB) and University College London (UCL) have visualized the water distribution in a fuel cell in three dimensions and in real time for the first time by evaluating neutron data from the ...

Electronics & Semiconductors

Sulfonamides make robust cathode material for proton batteries

Proton batteries are an innovative and environmentally friendly type of battery in which charge is carried by protons, which are positively charged hydrogen ions. A team of researchers has now developed organic sulfonamides ...

Engineering

Bringing order to hydrogen energy devices

Researchers at Kyoto University's Institute for Cell-Material Sciences (iCeMS) have developed a new approach to speed up hydrogen atoms moving through a crystal lattice structure at lower temperatures. They reported their ...

Electronics & Semiconductors

Bending an organic semiconductor can boost electrical flow

Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led ...

Machine learning & AI

Artificial intelligence paves way for new medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the optimal method for synthesizing ...

Energy & Green Tech

Cheap and efficient catalyst could boost renewable energy storage

Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum. The new catalyst, designed by researchers at City University Hong Kong (CityU) and tested by colleagues ...

page 2 from 4

Hydrogen atom

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively-charged proton and a single negatively-charged electron bound to the nucleus by the Coulomb force. The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains no neutrons; other isotopes contain one or more neutrons. This article primarily concerns hydrogen-1.

The hydrogen atom has special significance in quantum mechanics and quantum field theory as a simple two-body problem physical system which has yielded many simple analytical solutions in closed-form.

In 1914, Niels Bohr obtained the spectral frequencies of the hydrogen atom after making a number of simplifying assumptions. These assumptions, the cornerstones of the Bohr model, were not fully correct but did yield the correct energy answers. Bohr's results for the frequencies and underlying energy values were confirmed by the full quantum-mechanical analysis which uses the Schrödinger equation, as was shown in 1925/26. The solution to the Schrödinger equation for hydrogen is analytical. From this, the hydrogen energy levels and thus the frequencies of the hydrogen spectral lines can be calculated. The solution of the Schrödinger equation goes much further than the Bohr model however, because it also yields the shape of the electron's wave function ("orbital") for the various possible quantum-mechanical states, thus explaining the anisotropic character of atomic bonds.

The Schrödinger equation also applies to more complicated atoms and molecules. However, in most such cases the solution is not analytical and either computer calculations are necessary or simplifying assumptions must be made.

This text uses material from Wikipedia, licensed under CC BY-SA