Engineering

Greater access to clean water, thanks to a better membrane

Water scarcity around the world is a bigger problem than ever, and desalination is critical to solving it. The best available technologies for separating salt from seawater, though, are costly and require a great deal of ...

Energy & Green Tech

Sodium-ion batteries: How doping works

Sodium-ion batteries still have a number of weaknesses that could be remedied by optimizing the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität ...

Energy & Green Tech

Applying plasma technology for more effective lithium extraction

Recent research suggests an improved method for extracting lithium by applying plasma technology. Researchers from the Korea Institute of Fusion Energy (KFE) have successfully increased the lithium extraction rate by three ...

Energy & Green Tech

Researchers develop long-cycle, high-energy sodium-ion battery

The constantly growing demand for energy storage is driving research and development in battery technology. The sodium-ion battery is a reliable and affordable replacement for lithium-ion batteries. The easy accessibility ...

Energy & Green Tech

Battery technology achieves record high sodium-metal cycling rates

While lithium-ion batteries currently dominate the industry, serious concern remains about the limited availability of lithium used in these batteries. Conversely, sodium-ion batteries provide a more sustainable alternative ...

page 1 from 8

Sodium

Sodium (pronounced /ˈsoʊdiəm/) is a metallic element with a symbol Na (from Latin natrium or Arabic natrun) and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals within "group 1" (formerly known as ‘group IA’). It has only one stable isotope, 23Na.

Elemental sodium was first isolated by Sir Humphry Davy in 1806 by passing an electric current through molten sodium hydroxide. Elemental sodium does not occur naturally on Earth, but quickly oxidizes in air and is violently reactive with water, so it must be stored in an inert medium, such as a liquid hydrocarbon. The free metal is used for some chemical synthesis and heat transfer applications.

Sodium ion is soluble in water in nearly all of its compounds, and is thus present in great quantities in the Earth's oceans and other stagnant bodies of water. In these bodies it is mostly counterbalanced by the chloride ion, causing evaporated ocean water solids to consist mostly of sodium chloride, or common table salt. Sodium ion is also a component of many minerals.

Sodium is an essential element for all animal life and for some plant species. In animals, sodium ions are used in opposition to potassium ions, to allow the organism to build up an electrostatic charge on cell membranes, and thus allow transmission of nerve impulses when the charge is allowed to dissipate by a moving wave of voltage change. Sodium is thus classified as a “dietary inorganic macro-mineral” for animals. Sodium's relative rarity on land is due to its solubility in water, thus causing it to be leached into bodies of long-standing water by rainfall. Such is its relatively large requirement in animals, in contrast to its relative scarcity in many inland soils, that herbivorous land animals have developed a special taste receptor for sodium ion.

This text uses material from Wikipedia, licensed under CC BY-SA