This 'Harry Potter' light sensor achieves magically high efficiency of 200%
Using green light and a double-layered cell, Ph.D. researcher Riccardo Ollearo has come up with a photodiode that has sensitivity that many can only dream of.
Solar panels with multiple stacked cells are currently breaking records. Remarkably, a team of researchers from Eindhoven University of Technology and TNO at Holst Center have now managed to make photodiodes—based on a similar technology—with a photoelectron yield of more than 200%. You would think that efficiencies of more than 100% are only possible using alchemy and other Harry Potter–like wizardry. But it can be done. The answer lies in the magical world of quantum efficiency and stacked solar cells.
René Janssen, professor at the Eindhoven University of Technology and co-author of a new Science Advances paper, explains. "I know, this sounds incredible. But, we're not talking about normal energy efficiency here. What counts in the world of photodiodes is quantum efficiency. Instead of the total amount of solar energy, it counts the number of photons that the diode converts into electrons.
"I always compare it to the days when we still had guilders and lira. If a tourist from the Netherlands received only 100 lira for their 100 guilders during their holiday in Italy, they might have felt a bit shortchanged. But because in quantum terms, every guilder counts as one lira, they still achieved an efficiency of 100%. This also holds for photodiodes: the better the diode is able to detect weak light signals, the higher its efficiency."
Dark current
Photodiodes are light-sensitive semiconductor devices that produce a current when they absorb photons from a light source. They are used as sensors in a variety of applications, including medical purposes, wearable monitoring, light communication, surveillance systems, and machine vision. In all these domains, high sensitivity is key.
Details of the photodiode used in the experimental setting. Credit: TU/e, Bart van Overbeeke
In the left image we see the set-up in which the new tandem photodiode can be used to monitor the heart and respiration rates of a person. The right images show the detected heart and respiration signals recorded with the photodiode at a distance of 130 cm. Credit: TU/e, Riccardo Ollearo
Holding the photodiode device at 130 cm from his finger, researcher Riccardo Ollearo was able to detect minute changes in the amount of infrared light that was reflected back into the diode. These changes turn out to be a correct indication of a person’s heart rate. Credit: TU/e, Bart van Overbeeke