Revive the map: 4-D building reconstruction with machine learning

Revive the map: 4-D building reconstruction with machine learning
Credit: Skolkovo Institute of Science and Technology

A research team from Skoltech and FBK (Italy) has presented a methodology to derive 4-D building models using historical maps and machine learning. The implemented method relies on geometric, neighborhood, and categorical attributes in order to predict building heights. The method is useful for understanding urban phenomena and changes that contributed to defining our cities' actual shape. The results were published in Applied Sciences.

Historical maps are the most powerful source used to analyze changes in . Nevertheless, maps represent the 3-D world in the 2-D space, which describes the main features of the urban environment but fails to incorporate other , such as building heights. In 3-D/4-D city modeling applications based on , the lack of building heights is a major obstacle for accurate space representation, analysis, visualization or simulations.

Scientists from Skoltech and 3DOM research unit of FBK Trento explored solutions for inferring building heights from .

Their method tested on four historical maps of Trento (years 1851, 1887, 1908, and 1936) and Bologna (years 1884 and 1945) reflecting the biggest changes in the urban structures over the last centuries helped to reconstruct multi-temporal (4-D) versions of these cities.

"The implemented learning and predictive procedure tested on historical data has proved to be effective and promising for many other applications. Based on few attributes for the prediction, it will soon be expanded to diverse real-life contexts with missing elevation data. The resulting models will be a great help in bridging the geospatial knowledge gap in past or remote situations," Emre Ozdemir, a Skoltech and FBK Trento Ph.D. student, explains.

Revive the map: 4-D building reconstruction with machine learning
Credit: Skolkovo Institute of Science and Technology

Explore further

Machine learning aids in simulating dynamics of interacting atoms

More information: Elisa Mariarosaria Farella et al. 4D Building Reconstruction with Machine Learning and Historical Maps, Applied Sciences (2021). DOI: 10.3390/app11041445
Citation: Revive the map: 4-D building reconstruction with machine learning (2021, February 24) retrieved 20 October 2021 from https://techxplore.com/news/2021-02-revive-d-reconstruction-machine.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
14 shares

Feedback to editors