Energy & Green Tech

Salt and a battery: Smashing the limits of power storage

Thanks to the renewables boom, the limiting factor of the energy revolution is not power supply as much as power storage these days. Cleaner, greener batteries are needed to charge cars, ebikes and devices for longer.

Energy & Green Tech

Experts to visit Fukushima plant to check water release plan

A team of experts from the International Atomic Energy Agency will visit Japan's wrecked Fukushima nuclear power plant next week to review plans to begin releasing more than a million tons of treated radioactive water into ...

Energy & Green Tech

Our next renewable energy source could be an artificial leaf

LSU researchers are exploring new ways to use the oldest energy source on our planet—sunlight—to create truly green energy on demand. You've already heard of solar cells and solar panels, but David Vinyard, assistant ...

Automotive

Nuclear-powered submarines explained by a nuclear scientist

The Australian government has just declared an historic defense agreement with the United States and United Kingdom that will see a new fleet of nuclear-powered submarines patrol our shores and surrounding waters.

Energy & Green Tech

How do solar panels work?

How do solar panels work? – Nathan, age 5, Melbourne, Australia.

page 23 from 23

Atom

The atom is a basic unit of matter consisting of a dense, central nucleus surrounded by a cloud of negatively charged electrons. The atomic nucleus contains a mix of positively charged protons and electrically neutral neutrons (except in the case of hydrogen-1, which is the only stable nuclide with no neutron). The electrons of an atom are bound to the nucleus by the electromagnetic force. Likewise, a group of atoms can remain bound to each other, forming a molecule. An atom containing an equal number of protons and electrons is electrically neutral, otherwise it has a positive or negative charge and is an ion. An atom is classified according to the number of protons and neutrons in its nucleus: the number of protons determines the chemical element, and the number of neutrons determine the isotope of the element.

The name atom comes from the Greek ἄτομος/átomos, α-τεμνω, which means uncuttable, something that cannot be divided further. The concept of an atom as an indivisible component of matter was first proposed by early Indian and Greek philosophers. In the 17th and 18th centuries, chemists provided a physical basis for this idea by showing that certain substances could not be further broken down by chemical methods. During the late 19th and early 20th centuries, physicists discovered subatomic components and structure inside the atom, thereby demonstrating that the 'atom' was divisible. The principles of quantum mechanics were used to successfully model the atom.

Relative to everyday experience, atoms are minuscule objects with proportionately tiny masses. Atoms can only be observed individually using special instruments such as the scanning tunneling microscope. Over 99.9% of an atom's mass is concentrated in the nucleus, with protons and neutrons having roughly equal mass. Each element has at least one isotope with unstable nuclei that can undergo radioactive decay. This can result in a transmutation that changes the number of protons or neutrons in a nucleus. Electrons that are bound to atoms possess a set of stable energy levels, or orbitals, and can undergo transitions between them by absorbing or emitting photons that match the energy differences between the levels. The electrons determine the chemical properties of an element, and strongly influence an atom's magnetic properties.

This text uses material from Wikipedia, licensed under CC BY-SA