Computer Sciences

A new way to let AI chatbots converse all day without crashing

When a human-AI conversation involves many rounds of continuous dialogue, the powerful large language machine-learning models that drive chatbots like ChatGPT sometimes start to collapse, causing the bots' performance to ...

Robotics

How ancient sea creatures can inform soft robotics

Soft robotics is the study of creating robots from soft materials, which has the advantage of flexibility and safety in human interactions. These robots are well-suited for applications ranging from medical devices to enhancing ...

Engineering

Researchers figure out optimal stiffness-toughness trade-off

Using 3D printing, researchers at the U of A and Massachusetts Institute of Technology have developed a novel approach for achieving an optimal combination of stiffness and toughness in microstructured composites.

Computer Sciences

How symmetry can come to the aid of machine learning

Behrooz Tahmasebi—an MIT Ph.D. student in the Department of Electrical Engineering and Computer Science (EECS) and an affiliate of the Computer Science and Artificial Intelligence Laboratory (CSAIL)—was taking a mathematics ...

page 2 from 40

Computer

A computer is a machine that manipulates data according to a set of instructions.

Although mechanical examples of computers have existed through much of recorded human history, the first electronic computers were developed in the mid-20th century (1940–1945). These were the size of a large room, consuming as much power as several hundred modern personal computers (PCs). Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction of the space. Simple computers are small enough to fit into a wristwatch, and can be powered by a watch battery. Personal computers in their various forms are icons of the Information Age and are what most people think of as "computers". The embedded computers found in many devices from MP3 players to fighter aircraft and from toys to industrial robots are however the most numerous.

The ability to store and execute lists of instructions called programs makes computers extremely versatile, distinguishing them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a certain minimum capability is, in principle, capable of performing the same tasks that any other computer can perform. Therefore computers ranging from a mobile phone to a supercomputer are all able to perform the same computational tasks, given enough time and storage capacity.

This text uses material from Wikipedia, licensed under CC BY-SA