Energy & Green Tech

Enhancing radiative cooling with aperture mirror structures

In a world where rising temperatures increase the demand for cooling, traditional air conditioning (AC) systems contribute significantly to global energy consumption. They also heat Earth overall: to cool down a certain volume ...

Engineering

This device gathers, stores electricity in remote settings

Today wirelessly connected devices are performing an expanding array of applications, such as monitoring the condition of engines and machinery and remote sensing in agricultural settings. Systems known as the "Internet of ...

Engineering

Team explores the subterranean storage of hydrogen

Imagine a vast volume of porous sandstone reservoir, once full of oil and natural gas, now full of a different carbon-free fuel—hydrogen. Scientists at Sandia National Laboratories are using computer simulations and laboratory ...

Business

How vulnerable are European countries to changes in gas prices?

On 24 February 2022, the Russian army entered Ukraine, escalating a conflict that had begun almost a decade earlier. On the same day, the European Council held an urgent meeting to respond to the aggression and to study emergency ...

page 4 from 40

Energy

In physics, energy (from the Greek ἐνέργεια - energeia, "activity, operation", from ἐνεργός - energos, "active, working") is a scalar physical quantity that describes the amount of work that can be performed by a force, an attribute of objects and systems that is subject to a conservation law. Different forms of energy include kinetic, potential, thermal, gravitational, sound, light, elastic, and electromagnetic energy. The forms of energy are often named after a related force.

Any form of energy can be transformed into another form, but the total energy always remains the same. This principle, the conservation of energy, was first postulated in the early 19th century, and applies to any isolated system. According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time.

Although the total energy of a system does not change with time, its value may depend on the frame of reference. For example, a seated passenger in a moving airplane has zero kinetic energy relative to the airplane, but non-zero kinetic energy relative to the Earth.

This text uses material from Wikipedia, licensed under CC BY-SA