Energy & Green Tech

Making hydrogen from waste plastic could pay for itself

Hydrogen is viewed as a promising alternative to fossil fuel, but the methods used to make it either generate too much carbon dioxide or are too expensive. Rice University researchers have found a way to harvest hydrogen ...

Energy & Green Tech

Pollution-free hydrogen: green energy breakthrough?

Scientists said Tuesday they have developed a way of extracting hydrogen from oil without releasing greenhouse gases—a breakthrough they hailed as a "silver bullet" for cleaner energy and the climate.

Energy & Green Tech

Consortium runs world's first hydrogen-powered gas turbine

A European consortium on Wednesday said it had in a world first successfully tested a gas turbine fully powered by hydrogen, opening the way to slashing carbon emissions in energy-intensive industries like cement.

Energy & Green Tech

France climbs aboard hydrogen train revolution

France is joining the hydrogen train revolution, the head of state rail operator SNCF said Thursday, announcing an order for 15 emissions-free regional trains to replace polluting diesel models.

Energy & Green Tech

Making hydrogen out of thin air

A team of researchers at the University of Melbourne, working with a colleague from the University of Manchester, has developed a device that can use humidity from the air to make hydrogen gas. In their paper published in ...

page 2 from 16

Hydrogen

Hydrogen (pronounced /ˈhaɪdrədʒən/) is the chemical element with atomic number 1. It is represented by the symbol H. At standard temperature and pressure, hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794 u, hydrogen is the lightest element.

Hydrogen is the most abundant chemical element, constituting roughly 75% of the universe's elemental mass. Stars in the main sequence are mainly composed of hydrogen in its plasma state. Elemental hydrogen is relatively rare on Earth. Industrial production is from hydrocarbons such as methane with most being used "captively" at the production site. The two largest uses are in fossil fuel processing (e.g., hydrocracking) and ammonia production mostly for the fertilizer market. Hydrogen may be produced from water by electrolysis at substantially greater cost than production from natural gas.

The most common isotope of hydrogen is protium (name rarely used, symbol H) with a single proton and no neutrons. In ionic compounds it can take a negative charge (an anion known as a hydride and written as H−), or as a positively-charged species H+. The latter cation is written as though composed of a bare proton, but in reality, hydrogen cations in ionic compounds always occur as more complex species. Hydrogen forms compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry with many reactions exchanging protons between soluble molecules. As the only neutral atom with an analytic solution to the Schrödinger equation, the study of the energetics and bonding of the hydrogen atom played a key role in the development of quantum mechanics.

Hydrogen is important in metallurgy as it can embrittle many metals, complicating the design of pipelines and storage tanks. Hydrogen is highly soluble in many rare earth and transition metals and is soluble in both nanocrystalline and amorphous metals. Hydrogen solubility in metals is influenced by local distortions or impurities in the crystal lattice.

This text uses material from Wikipedia, licensed under CC BY-SA