Energy & Green Tech

Pilot plant demonstrates iron-based hydrogen storage feasibility

Photovoltaics are set to meet over 40% of Switzerland's electricity needs by 2050. But solar power isn't always available when it's needed: there's too much of it in summer and too little in winter, when the sun shines less ...

Energy & Green Tech

Dormant capacity reserve in lithium-ion batteries detected

Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously ...

page 1 from 6

Iron

Iron (pronounced /ˈаɪ.ərn/) is a chemical element with the symbol Fe (Latin: ferrum) and atomic number 26. Iron is a group 8 and period 4 element. Iron and iron alloys (steels) are by far the most common metals and the most common ferromagnetic materials in everyday use. Fresh iron surfaces are lustrous and silvery-grey in colour, but oxidise in air to form a red or brown coating of ferrous oxide or rust. Pure single crystals of iron are soft (softer than aluminium), and the addition of minute amounts of impurities, such as carbon, significantly strengthens them. Alloying iron with appropriate small amounts (up to a few per cent) of other metals and carbon produces steel, which can be 1,000 times harder than pure iron.

Iron-56 is the heaviest stable isotope produced by the alpha process in stellar nucleosynthesis; heavier elements than iron and nickel require a supernova for their formation. Iron is the most abundant element in the core of red giants, and is the most abundant metal in iron meteorites and in the dense metal cores of planets such as Earth.

This text uses material from Wikipedia, licensed under CC BY-SA