Engineering

Sandblasting with light

Sandblasting—that was yesterday. Laser beams can now clean and structure surfaces more precisely and cost-effectively and in more environmentally friendly ways than conventional systems. The Fraunhofer Institute for Material ...

Engineering

Creating a perfect trap for light

Whether in photosynthesis or in a photovoltaic system: If you want to use light efficiently, you have to absorb it as completely as possible. However, this is difficult if the absorption is to take place in a thin layer of ...

Engineering

How eye imaging technology could help robots and cars see better

Even though robots don't have eyes with retinas, the key to helping them see and interact with the world more naturally and safely may rest in optical coherence tomography (OCT) machines commonly found in the offices of ophthalmologists.

page 3 from 5

Laser

A laser is a device that emits light (electromagnetic radiation) through a process called stimulated emission. The term laser is an acronym for light amplification by stimulated emission of radiation. Laser light is usually spatially coherent, which means that the light either is emitted in a narrow, low-divergence beam, or can be converted into one with the help of optical components such as lenses. Typically, lasers are thought of as emitting light with a narrow wavelength spectrum ("monochromatic" light). This is not true of all lasers, however: some emit light with a broad spectrum, while others emit light at multiple distinct wavelengths simultaneously. The coherence of typical laser emission is distinctive. Most other light sources emit incoherent light, which has a phase that varies randomly with time and position.

This text uses material from Wikipedia, licensed under CC BY-SA