Energy & Green Tech

Form Energy announces Iron-Air 100-hour storage battery

Officials with battery maker Form Energy have announced the development of the Iron-Air 100-hour storage battery—a battery meant to store electricity created from renewable sources such as solar and wind. As part of their ...

Energy & Green Tech

Researchers develop alternative to lithium batteries

Lithium-ion batteries are currently the preferred technology to power electric vehicles, but they're too expensive for long-duration grid-scale energy storage systems, and lithium itself is becoming more challenging to access.

Energy & Green Tech

Potassium metal battery emerges as a rival to lithium-ion technology

From cell phones, to solar power, to electric cars, humanity is increasingly dependent on batteries. As demand for safe, efficient, and powerful energy storage continues to rise, so too does the call for promising alternatives ...

Energy & Green Tech

Researchers develop viable sodium battery

Washington State University (WSU) and Pacific Northwest National Laboratory (PNNL) researchers have created a sodium-ion battery that holds as much energy and works as well as some commercial lithium-ion battery chemistries, ...

Energy & Green Tech

Researchers develop a cobalt-free cathode for lithium-ion batteries

Researchers at the University of California, Irvine and four national laboratories have devised a way to make lithium-ion battery cathodes without using cobalt, a mineral plagued by price volatility and geopolitical complications.

page 2 from 40

Lithium-ion battery

Lithium-ion batteries (sometimes abbreviated Li-ion batteries) are a type of rechargeable battery in which lithium ions move from the anode to cathode during discharge, and from the cathode to the anode when charged.

Lithium ion batteries are common in consumer electronics. They are one of the most popular types of battery for portable electronics, with one of the best energy-to-weight ratios, no memory effect, and a slow loss of charge when not in use. In addition to uses for consumer electronics, lithium-ion batteries are growing in popularity for defense, automotive, and aerospace applications due to their high energy density. However, certain kinds of mistreatment may cause conventional Li-ion batteries to explode.

The three primary functional components of a lithium ion battery are the anode, cathode, and electrolyte, for which a variety of materials may be used. Commercially, the most popular material for the anode is graphite. The cathode is generally one of three materials: a layered oxide, such as lithium cobalt oxide, one based on a polyanion, such as lithium iron phosphate, or a spinel, such as lithium manganese oxide, although materials such as TiS2 (titanium disulfide) were originally used. Depending on the choice of material for the anode, cathode, and electrolyte the voltage, capacity, life, and safety of a lithium ion battery can change dramatically. Recently novel architectures have been employed to improve the performance of these batteries. Lithium ion batteries are not to be confused with lithium batteries, the key difference being that lithium batteries are primary batteries containing metallic lithium while lithium-ion batteries are secondary batteries containing an intercalation anode material.

This text uses material from Wikipedia, licensed under CC BY-SA