Energy & Green Tech

Up to 30 percent more capacity for lithium-ion batteries

Researchers of Karlsruhe Institute of Technology (KIT) and cooperating institutions studied structural changes during the synthesis of cathode materials for future high-energy lithium-ion batteries and obtained new major ...

Energy & Green Tech

'Magic crystals' to enable the future of electric cars

CSIRO and Monash University's Matthew Hill will receive the Solomon Award tonight for developing "magic crystals" with dozens of applications from cleaning gases and liquids to mining and drug production.


Paris e-scooters under pressure to prove green credentials

Pulling on makeshift roped hooks along a sun-drenched bank of the Seine River in Paris, Youva Hadjali and Edison Gompo fish out two electric scooters—not the most ecological fate for devices billed as a carbon-free fix ...

Energy & Green Tech

Beyond lithium-ion: next generation battery research underway

New smartphones, portable devices and electric cars may get a lot of the public's attention but all of them are dependent on batteries to make them run. Most current devices use rechargeable lithium-ion batteries—technology ...

Energy & Green Tech

Shedding new light on the charging of lithium-ion batteries

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion batteries for electric vehicles. Simply exposing the cathode to a beam ...

Energy & Green Tech

Toyota eyes Olympic platform to boost hydrogen tech

Toyota showcases its next-generation hydrogen-powered Mirai model at Wednesday's Tokyo Motor Show, but with the technology still lagging behind electric, the Japanese firm is hoping for an Olympic boost.

Energy & Green Tech

Calcium batteries: New electrolytes, enhanced properties

Calcium-based batteries promise to reach a high energy density at low manufacturing costs. This lab-scale technology has the potential for replacing lithium-ion technology in future energy storage systems. Using the electrolytes ...

Energy & Green Tech

Li-ion batteries: Science 'directly into your hand'

They are omnipresent and essential to navigating modern life. Small, light, rechargeable: lithium ion batteries have revolutionised our world in less than three decades.

page 1 from 16


Lithium (pronounced /ˈlɪθiəm/) is the chemical element with atomic number 3, and is represented by the symbol Li. It is a soft alkali metal with a silver-white color. Under standard conditions it is the lightest metal and the least dense solid element. Like all alkali metals lithium is highly reactive, corroding quickly in moist air to form a black tarnish. For this reason lithium metal is typically stored under the cover of oil. When cut open lithium exhibits a metallic luster, but contact with oxygen quickly turns it back to a dull silvery gray color. Lithium in its elemental state is highly flammable.

According to theory, lithium was one of the few elements synthesized in the Big Bang. Since its current estimated abundance in the universe is vastly less than that predicted by theory; the processes by which new lithium is created and destroyed, and the true value of its abundance, continue to be active matters of study in astronomy. The nuclei of lithium are relatively fragile: the two stable lithium isotopes found in nature have lower binding energies per nucleon than any other stable compound nuclides, save for the exotic and rare deuterium, and 3He. Though very light in atomic weight, lithium is less common in the solar system than 25 of the first 32 chemical elements.

Due to its high reactivity it only appears naturally in the form of compounds. Lithium occurs in a number of pegmatitic minerals, but is also commonly obtained from brines and clays. On a commercial scale, lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

Trace amounts of lithium are present in the oceans and in some organisms, though the element serves no apparent vital biological function in humans. However, the lithium ion Li+ administered as any of several lithium salts has proved to be useful as a mood stabilizing drug due to neurological effects of the ion in the human body. Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, high strength-to-weight alloys used in aircraft, and lithium batteries. Lithium also has important links to nuclear physics. The transmutation of lithium atoms to tritium was the first man-made form of a nuclear fusion reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.

This text uses material from Wikipedia, licensed under CC BY-SA