Hardware

Complex oxides could power the computers of the future

As the evolution of standard microchips is coming to an end, scientists are looking for a revolution. The big challenges are to design chips that are more energy efficient and to design devices that combine memory and logic ...

Robotics

Soft robotic origami crawlers

Materials scientists aim to develop biomimetic soft robotic crawlers including earthworm-like and inchworm-like crawlers to realize locomotion via in-plane and out-of-plane contractions for a variety of engineering applications. ...

Robotics

On-the-fly reconfigurable magnetic slime used as a robot

A team of researchers affiliated with a host of entities in China has created a type of magnetic slime that can be configured on the fly to perform a variety of robotic tasks. In their paper published in the journal Advanced ...

Engineering

Powering sea to space

Magnetic materials pose major limitations in power electronic applications at high frequencies, but MSE Professor Michael McHenry and alums Paul Ohodnicki, Alex Leary and Sam Kernion have made advancements on materials and ...

page 2 from 4

Magnet

A magnet (from Greek μαγνήτις λίθος magnḗtis líthos, "Magnesian stone") is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials and attracts or repels other magnets.

A permanent magnet is one made from a material that stays magnetized. An example is a magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include iron, nickel, cobalt, some rare earth metals and some of their alloys (e.g. Alnico), and some naturally occurring minerals such as lodestone.

Although ferromagnetic (and ferrimagnetic) materials are the only ones with an attraction strong enough to a magnet to be commonly considered "magnetic", all other substances respond weakly to a magnetic field, by one of several other types of magnetism.

An electromagnet is made from a coil of wire which acts as a magnet when an electric current passes through it, but stops being a magnet when the current stops. Often an electromagnet is wrapped around a core of ferromagnetic material like steel, which enhances the magnetic field produced by the coil.

The overall strength of a magnet is measured by its magnetic moment, while the local strength of the magnetism in a material is measured by its magnetization.

This text uses material from Wikipedia, licensed under CC BY-SA